«АРИФМЕТИКА НАВОЗОХРАНИЛИЩ»: В ЧЕМ ВЫГОДЫ СТРОИТЕЛЬСТВА ШЕСТИ ЛАГУН ВМЕСТО ДВУХ

Зачастую хозяйства понимают рекомендации РД-АПК буквально и проектируют только две лагуны, руководствуясь, казалось бы, очевидным доводом – снижением затрат на строительство. Однако на практике такая экономия нередко оказывается мнимой, и более того, во многих случаях приводит не просто к увеличению расходов, но и к невозможности работать с лагунами спустя всего два или три года эксплуатации.

НЕ МЕНЕЕ ДВУХ — ЗНАЧИТ ДВЕ?

В разделе «Хранение навоза и помета» РД-АПК 1.10.15.02–17 указано, что «в целях совмещения процессов карантинирования и хранения навоза и помета количество секций хранилищ должно быть не менее двух». То есть строительство только двух лагун формально не противоречит рекомендациям министерского документа.

А теперь рассмотрим, что в действительности происходит по факту работы с ними. Изначально навозный сток направляется в лагуну № 1 (верхнюю в левом столбце на схеме 1), в то время как лагуна № 2 (нижняя в том же столбце на схеме) остается пустой. После заполнения всего полезного объема первой лагуны начинается процесс отстаивания, а слив жидкого навоза производится во вторую. Когда же наполняется и она (спустя 4-5 месяцев), хозяйство сталкивается с серьезной проблемой: сливать поступающий навоз попросту некуда лагуна № 1 еще не освобождена, а в лагуне № 2 — нет свободного места.

К сожалению, некоторые хозяйства в такой ситуации идут на умышленное нарушение действующих норм — приступают к освобождению хранилищ до завершения срока выдержки. Отсюда не только отсутствие выгоды от внесения навоза в поля (который при таком подходе не будет эффективным органическим удобрением), но и серьезный вред как собственным полям. так и экологии близлежащих территорий с последующими экологическими штрафами, недовольством местных жителей и излишним вниманием надзорных органов.

Конечно, проблему недостатка места можно спрогнозировать и просчитать еще на этапе проектирования и заведомо завысить объемы навозохранилищ. Впрочем, назвать такой путь экономичным и эффективным нельзя. Следует понимать, что он приведет, во-пер-

вых, к удорожанию строительства, а во-вторых, к росту эксплуатационных расходов — в частности, усложнению перемешивания — необходимости применения более дорогого и энергозатратного оборудования (схема 2).

Неужели следует признать увеличение объемов хранилищ «неизбежным злом»? Точнее — наименьшим из зол? Или существует вариант работы с соблюдением всех норм, не только не влекущий при этом дополнительных затрат, но и позволяющий сэкономить?

Ответ на первый взгляд покажется абсурдным: решить проблему нехватки места для навоза можно... уменьшив суммарный объем хранилищ, но увеличив при этом их количество. Заменив, например, две условные лагуны по $80\,000\,\mathrm{m}^3$ (в сумме — $160\,000\,\mathrm{m}^3$) на четыре по $36\,000\,\mathrm{m}^3$ (итого — $144\,000\,\mathrm{m}^3$).

ЧЕМ БОЛЬШЕ, ТЕМ МЕНЬШЕ?

Возьмем для примера свинокомплекс с годовым объемом жидкого навоза 79 935 м³ (таблица 1). Как видно,

Схема 1. Фактическая работа с двумя лагунами

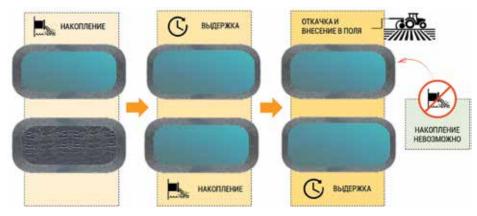


Схема 2. Увеличение расходов при увеличении объемов лагун

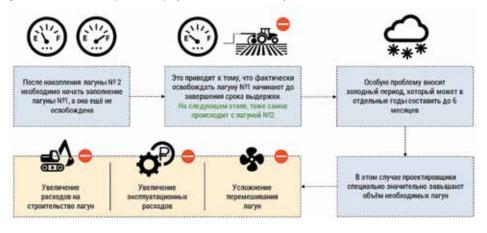


Таблица 1. При увеличении количества лагун их необходимый объем уменьшается

e.	НЕРАЗДЕЛЕННЫЙ	РАЗДЕЛЕННЫЙ НАВОЗ				
	HAB03	жидкая фракция	ТВЕРДАЯФРАКЦИЯ			
ОБЪЁМ ЖИДКОГО НАВОЗА ИЗ ПРОИЗВОДСТВЕННЫХ ПОМЕЩЕНИЙ, М ³	79 935					
ОБЪЁМ ФРАК ЦИЙ ПОСЛЕ РАЗДЕЛЕНИЯ, М³		65 724	14 199			
СОДЕРЖАНИЕ ВЛАГИ В НАВОЗЕ И ФРАКЦИЯХ, %	92,2	97	70			
НОРМАТИВНАЯ ПРОДОЛЖИТЕЛЬНОСТЬ ВЫДЕРЖКИ ДЛЯ ДЕГЕЛЬМИНТИЗАЦИИ, МЕС.	12	6-9 (в зависимости от периода заполнения лето-зима)	1-2 (на полевых площадках о переброской ворошителями)			
НОРМАТИВНАЯ ЁМКОСТЬ (М³) ОДНОГО ХРАНИЛИЩА (СУММАРНАЯ ЁМКОСТЬ) ПРИ ИХ КОЛИЧЕСТВЕ:			2516			
2	Нет места для слива на третий год	Нет места для слива на второй год				
3	51 300 (153 900)	30 500 (91 500)				
4	36 200 (144 800)	22 800 (91 200)				
5	28 800 (144 000)	17 600 (88 000)				
6	22 300 (133 800)	12 000 (72 000)				

суммарные объемы лагун при увеличении их количества уменьшаются. Почему это происходит? Очевидно, что наполнение меньшей по объему лагуны происходит быстрее, чем большой. Как следствие, раньше начинается и процесс отстаивания. К тому моменту, когда заполнятся оставшиеся хранилища, первую лагуну уже успевают опорожнить — подготовить к накоплению навоза. Таким образом, хозяйству не требуется предусматривать резерв емкости, как в случае с двумя.

Итак, при увеличении числа навозохранилищ с двух до шести рассматриваемый нами свинокомплекс может сократить их требуемый суммарный объем — для жидкой фракции разделенного навоза — с 91 500 м³ до 72 000 м³ — более чем на 20%.

ЭКОНОМИЯ НА ПРАКТИКЕ ВМЕСТО ЭКОНОМИИ В ТЕОРИИ

Конечно, ключевым фактором экономии для хозяйства будут не объемы, площади, количества и прочие характеристики хранилищ, а конкретные затраты на их строительство, выраженные в рублях. Будут ли выгоды действительно ощутимыми? Или наоборот, разница не столь и велика, чтобы вносить изменения в проект и в целом, выражаясь простым языком, «городить весь этот огород»? Что дешевле построить — несколько небольших лагун или все же две большие? Не приведет ли, например, увеличение периметров хранилищ к значительному увеличению площадей покрытия и расходов на геомембраны?

Для ответа обратимся к конкретным цифрам, сразу оговорившись, что приведенные в таблице 2 стоимости являются ориентировочными и нужны только для того, чтобы оценить порядок цен и динамику их изменения.

Чем объяснить существенное снижение итоговой стоимости? На схеме 3 представлена приблизительная структура затрат при строительстве навозохранилищ. Как видно, почти $^{3}/_{4}$ приходится на земляные работы, стоимость которых определяется исходя из изъятой

земли (фактических кубических метров — чем меньше, тем дешевле). В то время, как на геомембраны («пленку») и работы, связанные с их монтажом, приходится чуть более $^1/_4$, а значит, даже в случае некоторого увеличения затрат по этому блоку, общая стоимость строительства всё равно будет меньшей (для трех, чем для двух; для четырех, чем для трех и т. д.).

Кроме сокращения затрат на строительство, следует отметить и существенное сокращение расходов на эксплуатацию — в первую очередь, благодаря упрощению процесса перемешивания. Для работы с небольшими лагунами подойдут мешалки меньшей длины и мощности, следовательно, сократятся время перемешивания и энергозатраты, а кроме того, повысится эффективность (мешалки покрывают всю емкость), что позволит исключить образование толстого донного осадка и избежать быстрого выхода хранилища из строя.

ШИРОКОЕ ОКНО

Какие еще выгоды получит хозяйство при строительстве более чем двух навозохранилищ? Таблицы 3 и 4 наглядно демонстрируют значительное расширение временных рамок откачки и внесения навоза в поля. Так, в случае с тремя накопителями это в среднем 4 месяца в год для каждого хранилища, а в случае с четырьмя лагунами — уже 6.

Хозяйство получает возможность внесения органических удобрений именно тогда, когда они нужны для достижения максимальной эффективности, в том числе и в вегетационный период. Как результат — получение наибольшего прироста урожайности или, в случае с кормовыми травами, дополнительного укоса.

При работе с четырьмя и более лагунами рамки внесения расширятся еще, а значит, хозяйство сможет свободно планировать удобный график работ, снизив в том числе и риски, связанные с плохой погодой, а также оптимально задействовав имеющуюся технику.

Таблица 2. Снижение затрат на строительство лагун

Количество лагун	Неразделённый навоз	Стоимость строительства лагун, руб.	Жидкая фракция разделённого навоза	Стоимость строительства лагун, руб.		
3	51300 (153900)	53 402 420	30500 (91500)	38 013 926		
4	36200 (144800)	50 315 575	23800 (91200)	37 872 624		
5	28800 (144000)	50 009 891	17600 (88000)	36 493 369		
6	22300 (133800)	46 302 676	12000 (72000)	29 802 918		

Схема 3. Структура затрат на строительство навозохранилищ

- формирования дамбы
 Планировка площадей насыпи дамб, с послойным уплотнением грунта

- Устройство анкерной траншей
- Защитный подстилающий слой из нетканного геотекстиля
- Геомембрана HDPE
- Комплектующие для монтажа
- Монтаж
- Доставка материалов

Таблица 3. Месяцы возможной откачки для внесения в поля (для трех лагун)

год	ЛАГУНА	МЕСЯЦЫ											
	1												ДЕКАБРЬ
1	2												
	3												
	1	ЯНВАРЬ	ФЕВРАЛЬ	MAPT									
2	2								АВГУСТ				
	3										ОКТЯБРЬ	НОЯБРЬ	ДЕКАБРЬ
	1			MAPT	АПРЕЛЬ	МАЙ	ИЮНЬ						
3	2											НОЯБРЬ	
	3	ЯНВАРЬ											
4	1									СЕНТЯБРЬ			
	2											НОЯБРЬ	ДЕКАБРЬ
	3	ЯНВАРЬ	ФЕВРАЛЬ	MAPT	АПРЕЛЬ								

Таблица 4. Месяцы возможной откачки для внесения в поля (для четырех лагун)

год	ЛАГУНА	МЕСЯЦЫ											
	1											НОЯБРЬ	ДЕКАБРЬ
4	2												
•	3												
	4												
	1	ЯНВАРЬ	ФЕВРАЛЬ	MAPT	АПРЕЛЬ								
2	2			MAPT	АПРЕЛЬ	МАЙ	ИЮНЬ	июль	АВГУСТ				
۷	3										ОКТЯБРЬ	НОЯБРЬ	ДЕКАБРЬ
	4											НОЯБРЬ	ДЕКАБРЬ
	1			MAPT	АПРЕЛЬ	МАЙ	ИЮНЬ	июль	АВГУСТ				
	2										ОКТЯБРЬ	НОЯБРЬ	ДЕКАБРЬ
3	3											НОЯБРЬ	ДЕКАБРЬ
	4	ЯНВАРЬ	ФЕВРАЛЬ	MAPT	АПРЕЛЬ								
	1										ОКТЯБРЬ	ноябрь	ДЕКАБРЬ
	2											НОЯБРЬ	ДЕКАБРЬ
4	3	ЯНВАРЬ	ФЕВРАЛЬ	MAPT	АПРЕЛЬ								
	4			MAPT	АПРЕЛЬ	МАЙ	ИЮНЬ	июль	АВГУСТ				

ЧЕТЫРЕ, ПЯТЬ ИЛИ ШЕСТЬ?

Подводя итоги, перечислим еще раз выгоды для сельхозпроизводителя при строительстве большего числа лагун:

- 1. Существенное снижение затрат на строительство.
- 2. Упрощение эксплуатации и значительное сокращение расходов на нее.
- 3. Увеличение периода внесения, большие возможности по планированию работ и прирост урожайности.

Руководствуясь исключительно стоимостью, можно сделать вывод, что наилучший из предложенных вариантов — это проектирование шести хранилищ, однако правильным будет рассмотреть варианты 4-6 накопителей и сделать выбор в пользу того или иного решения, отталкиваясь от изначального объема навоза, требуемых рамок внесения и месяца введения объекта в эксплуатацию.

Антон Ерхов, специалист ООО «Биокомплекс»