ЗООТЕХНИЯ И ВЕТЕРИНАРИЯ

УДК 069.5:069.8:636.2:611.714

Научная статья

© creative commons

Открытый доступ

DOI: 10.32634/0869-8155-2023-368-3-22-31

В.И. Трухачев¹,

О.И. Боронецкая¹, ⊠

А.М. Остапчук¹,

Ю.А. Юлдашбаев1,

А.П. Каледин¹,

А.В. Овчинников¹

А.В. Тютюнникова¹,

И.С. Рубцова¹,

А.С. Гриничева¹,

А.А. Николаев²

¹ Российский государственный аграрный университет — MCXA им. К.А. Тимирязева, Москва, Российская Федерация

² Федеральный исследовательский центр животноводства — ВИЖ им. академика Л.К. Эрнста, пос. Дубровицы, Московская обл., Российская Федерация

☑ liskun@rgau-msha.ru

Поступила в редакцию: 25.01.2023

Одобрена после рецензирования: 12.02.2023

Принята к публикации: 28.02.2023

Research article

Open access

DOI: 10.32634/0869-8155-2023-368-3-22-31

Vladimir I. Trukhachev¹, Oksana I. Boronetskaya¹, ⊠ Artem M. Ostapchuk¹, Yusupzhan A. Yuldashbaev¹, Anatoly P. Kaledin¹, Anatoly V. Ovchinnikov¹, Alexandra V. Tyutyunnikova¹, Irina S. Rubtsova¹, Anachtasia S. Grinicheva¹, Alexander A. Nikolaev²

¹ Russian State Agrarian University — K.A. Timiryazev Agricultural Academy, Moscow. Russian Federation

² Federal Research Center of Animal Husbandry — VIZ Academician L.K. Ernst, Dubrovitsy village, Moscow region, Russian Federation

☑ liskun@rgau-msha.ru

Received by the editorial office: 25.01.2023

Accepted in revised: 12.02.2023

Accepted for publication: 28.02.2023

Краниологическая коллекция Музея животноводства им. Е.Ф. Лискуна как объект изучения морфологических, генетических и зоотехнических особенностей пород крупного рогатого скота

РЕЗЮМЕ

Актуальность. Статья посвящена изучению истории уникальной краниологической коллекции Музея животноводства им. академика Е.Ф. Лискуна и обзору современного состояния краниологических исследований в животноводстве.

Методы. Рассмотрены классическая методика измерения краниологического материала академика Е.Ф. Лискуна, его вклад в становление и развитие отечественной краниологической науки. Обсуждается возможность применения методики краниологических исследований, а также пути ее использования в других науках. Особый интерес представляют исследования черепов уже вымерших пород крупного рогатого скота, сохранившихся в коллекции музея. Экспериментальная часть работы проводилась на базе Музея животноводства им. Е.Ф. Лискуна. Материалом послужили черепа пород крупного рогатого скота из краниологической коллекции музея: альгауский скот, великорусский скот, красная тамбовская, ревельский, местный саратовский. Измерения промеров черепов проводились с помощью кронциркуля, измерительной ленты и линейки.

Результаты. Исследование исторических музейных экспонатов (черепов) позволяет получить новые данные об эволюции отечественного аллелофонда пород КРС, что дает возможность сравнения его с современными популяциями. Полученные данные найдут применение при разработке программ сохранения пород, а также и в селекции, поскольку локальные породы крупного рогатого скота представляют собой источник генетической изменчивости, обладающий быстрым реагированием на потребности сельскохозяйственного производства, позволяющие глубже изучить эволюционные процессы.

Ключевые слова: краниология, краниологические исследования, история коллекции, местные породы, Е.Ф. Лискун, музей животноводства, череп, ДНК

Для цитирования: Трухачев В.И. и др. Краниологическая коллекция Музея животноводства им. Е.Ф. Лискуна как объект изучения морфологических, генетических и зоотехнических особенностей пород крупного рогатого скота. *Аграрная наука*. 2023; 368 (3): 22–31, https://doi. org/10.32634/0869-8155-2023-368-3-22-31

© Трухачев В.И., Боронецкая О.И., Остапчук А.М., Юлдашбаев Ю.А., Каледин А.П., Овчинников А.В., Тютюнникова А.В., Рубцова И.С., Гриничева А.С., Николаев А.А.

The craniological collection of the Museum of Animal Husbandry named after E.F. Liskun, as an object of study of morphological, genetic and zootechnical features of cattle breeds

ABSTRACT

Relevance. This article deals with the study of history of the unique craniological collection of the Museum of Animal Husbandry named after Academician E.F. Liskun and a review of the current state of craniological research in animal husbandry.

Methods. The classical method of measuring the craniological material of Academician E.F. Liskun, his contribution to the formation and development of domestic craniological science is considered. The possibility of applying the craniological research methodology, as well as ways of its use in other sciences are under discussion. Of particular interest are the studies of skulls of extinct cattle breeds preserved in the museum's collection. The experimental part of the work is based on the collection of the Liskun Museum of Animal Husbandry. The skulls of cattle breeds from the museum's craniological collection are examined: "Algau" breed, "Velikorussky Great Russian" breed, "Krasnaya Tambovskaya Red Tambov", "Revelskaya" breed, local "Saratov" varieties. Checks of measurements of skulls were carried out by using the tools as a caliper, a measuring tape and a ruler.

Results. The studies of historical museum exhibits (skulls) allow us to obtain new data on the evolution of domestic genetic structure ("allelo-fund") of cattle breeds, which makes it possible to compare it with modern populations. The obtained data will be used in the development of breed conservation programs, as well as in breeding, as local cattle breeds are the source of genetic variability that has a rapid response to the needs of agricultural production. The obtained data allow more sophisticated studies of evolutionary processes.

Key words: craniology, craniological research, history of the collection, local breeds, E.F. Liskun, animal husbandry museum, skull, DNA

For citation: Trukhachev V.I., and al. The craniological collection of the Museum of Animal Husbandry named after E.F. Liskun, as an object of study of morphological, genetic and zootechnical features of cattle breeds *Agrarian science*. 2023; 368 (3): 22–31, https://doi. org/10.32634/0869-8155-2023-368-3-22-31 (In Russian).

© Trukhachev V.I., Boronetskaya O.I., Ostapchuk A.M., Yuldashbaev Yu.A., Kaledin A.P., Ovchinnikov A.V., Tyutyunnikova A.V., Rubtsova I.S., Grinicheva A.S., Nikolaev A.A.

Введение/Introduction

В Музее животноводства им. Е.Ф. Лискуна находится единственная в России коллекция черепов крупного рогатого скота, собранная в конце XIX — начале XX в. и насчитывающая более 700 экземпляров. В 1947 году она была передана в дар Тимирязевской академии основоположником отечественной сельскохозяйственной краниологии, выдающимся деятелем в области животноводства, одним из корифеев зоотехнической науки академиком Е.Ф. Лискуном.

Исследование морфологических особенностей сельскохозяйственных животных разных пород с целью изучения их продуктивности является одной из актуальных задач отечественного животноводства.

С помощью краниологического анализа появляется возможность исследования процесса развития и содержания животного, разводимого более 100 лет назад, что в дальнейшем дает возможность использования данного материала для повышения (улучшения) продуктивных качеств крупного рогатого скота [1].

При изучении природных популяций перед исследователями чаще всего стоят задачи определения фактического результата влияния среды на процесс формирования организма животного, в то время как морфологические исследования в области сельскохозяйственного животноводства прежде всего направлены на выявление закономерностей влияния доместикации, а также на возможно более ранний прогноз будущей продуктивности животного [2].

Материал и методы исследования/ Materials and method

В работе использовались архивные документы, хранящиеся в коллекции Музея животноводства им. Е.Ф. Лискуна, исследования проводились совместно с Федеральным исследовательским центром животноводства — ВИЖ им. академика Л.К. Эрнста. Объектом исследования послужили черепа утраченных и редких пород крупного рогатого скота — великорусского, красной тамбовской, местной саратовской, альгауской и ревельской, находящиеся в коллекции Музея животноводства им. Е.Ф. Лискуна (всего 34 черепа).

Измерения черепов КРС проводились по классической методике академика Е.Ф. Лискуна, насчитывающей 181 промер, при использовании соответствующих измерительных инструментов: кронциркуля, сантиметровой ленты, линейки. Стоит отметить, что у всех промеренных черепов отсутствует нижняя челюсть, а также имеются некоторые повреждения носовой и межчелюстной кости, присутствуют дефекты на затылочной и лобной поверхностях, в связи с чем некоторые промеры не представлялось возможным измерить.

Использование данной методики позволяет получить подробную детальную краниологическую оценку исследуемого объекта. Эта методика широко применяется не только в нашем музее, но и за его пределами.

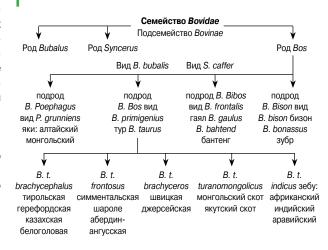
Результаты и обсуждение/Results and discussion *История сельскохозяйственной краниологии*

Известный швейцарский зоолог Л. Рютимейер был первым разработчиком классификации крупного рогатого скота (1885). Эта классификация разделила сородичей КРС на следующие группы: буйволы, бизоны американские, бизоны европейские (зубры), бантенги, зебу и т.д. [3].

При более детальном и глубоком изучении данного вопроса, учитывая специфику крупного рогатого скота, Рютимейер углубил его внутривидовую дифференциацию и определил краниологические типы. При исследовании строения черепа и формы рогов было выделено шесть основных типов: узколобый, лобастый, короткорогий, короткоголовый, безрогий (комолый) и пряморогий. Эта теория отрицала изменчивость черепа животного под влиянием условий внешней среды [3].

Благодаря многочисленным практическим экспериментам академик Е.Ф. Лискун смог научно опровергнуть теорию Л. Рютемейера.

В коллекции музея присутствуют как широко известные породы КРС, так и уникальные представители местных пород и отродий. Почти всем экспонатам более 100 лет, что делает коллекцию поистине «жемчужиной» аналогичных коллекций в мире. Нельзя не отметить, что Лискун, уделяя большое внимание вопросам улучшения животноводства путем создания новых высокопродуктивных пород, призывал сохранять имеющееся многообразие высокоприспособленных местных пород, которые иной раз хоть и не отличались высокой продуктивностью, но обладали хорошими адаптационными качествами к контрастным природно-климатическим условиям нашей страны [4].


Прозорливость выдающегося российского ученого особенно актуальна в наши дни, когда международные правила и принципы устойчивого животноводства ставят одной из своих первоочередных задач сохранение местных пород как ценнейшего генетического потенциала, а также элемента эволюции мировой цивилизации [4].

Современная зоологическая классификация происхождения крупного рогатого скота представлена на рисунке 1.

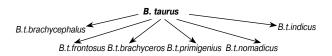
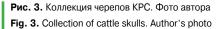

Классификация краниологических типов по Е.Ф. Лискуну, в которой он выделил шесть основных краниологических типов, представлена на рисунке 2 [3].

Рис. 1. Происхождение крупного рогатого скота по современной зоологической классификации [5]

Fig. 1. The origin of cattle according to modern zoological classification [5]

Рис. 2. Классификация краниологических типов по Е.Ф. Лискуну **Fig. 2.** Classification of craniological types according to E.F. Liskun


Современная работа с краниологической коллекцией

Благодаря коллекции, собранной Е.Ф. Лискуном, и с помощью молекулярно-генетических исследований возможно изучить характеристики уже вымершей породы КРС. Для детального научного изучения черепа используются точные измерения различных костей и частей черепа.

На рисунке 3 представлена часть коллекции черепов крупного рогатого скота из собраний Музея животноводства им. Е.Ф. Лискуна.

В настоящее время в музее разрабатывается проект для проведения работ детального изучения краниологической коллекции с помощью технологии 3D-сканирования. Данный метод подразумевает создание объемных графических объектов (черепов). Это позволит, с одной стороны, создать электронную базу уникальной краниологической коллекции Музея животноводства, а с другой — сделать более точные измерения краниологического материала. В связи с этим сотрудники музея совместно с Всесоюзным институтом животноводства им. Л.К. Эрнста,

Рис. 4. Измерение черепов КРС сотрудниками музея. Фото автора **Fig. 4.** Measurement of cattle skulls by museum staff. Author's photo

проанализировав международный опыт, а также опираясь на научные труды Е.Ф. Лискуна, разрабатывают новую, унифицированную и универсальную методику по измерениям черепов сельскохозяйственных и диких животных.

Таблица 1. Промеры черепа великорусского скота*
Table 1. Measurements of the skull of the Great Russian cattle*

№ промера	Результат, мм	№ промера	Результат мм						
1	405	30	175	59	75	88	обломан	117	235
2	410	31	60	60	75	89	105	118	200
3	395	32	обломан	61	75	90	95	119	250
4	190	33	60	62	46	91	102	120	10
5	обломан	34	50	63	100	92	45	121	215
6	обломан	35	50	64	110	93	35	122	обломан
7	105	36	120	65	90	94	45	123	110
8	290	37	140	66	105	95	60	124	45
9	200	38	140	67	35	96	45	125	62
10	230	39	120	68	170	97	рассохся	126	18
11	245	40	135	69	95	98	8	127	18
12	260	41	130	70	130	99	110	128	15
13	180	42	120	71	85	100	45	129	20
14	301	43	125	72	130	101	17	130	25
15	150	44	130	73	40	102	45	131	25
16	380	45	105	74	60	103	80	132	17
17	130	46	115	75	85	104	60	133	12
18	372	47	140	76	95	105	30	134	10
19	обломан	48	58	77	130	106	45	135	20
20	410	49	45	78	55	107	45	136	20
21	150	50	30	79	39	108	145	137	18
22	170	51	130	80	33	109	65	138-	161
23	180	52	230	81	обломан	110	152	нижняя чел	іюсть, нет
24	220	53	100	82	обломан	111	165	162	60
25	185	54	205	83	обломан	112	120	163	70
26	130	55	300	84	обломан	113	181	164-16	
27	115	56	270	85	50	114	230	167, 16	
28	131	57	300	86	обломан	115	115	169–179, 181	не измеряем
29	151	58	141	87	обломан	116	162	180	105

^{*} Носовая кость обломана, края межчелюстной ветви надломаны в месте соединения с носовой костью.

В настоящее время сотрудниками музея проводится научная работа по измерению черепов крупного рогатого скота (рис. 4).

В таблицах 1-5 представлены результаты промеров черепов крупного рогатого скота из коллекции музея.

Промеры черепов КРС разных пород имеют индивидуальные особенности строения и развития. Из общего количества всех промеров для сопоставления характеристики черепов выбрали три показателя: длину черепа, его ширину над задними краями глазниц и высоту средней части черепа.

Из пяти представленных пород наибольшая длина черепа (470 мм) наблюдалась у альгауской породы

Таблица 2. Промеры черепа красной тамбовской породы* Table 2. Measurements of the skull of the red Tambov breed*

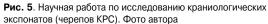


Fig. 5. Scientific work on the study of craniological exhibits (cattle skulls). Author's photo

№ промера	Результат, мм	№ промера	Результат, мм						
1	455	30	190	59	90	88	100	117	250
2	430	31	70	60	90	89	130	118	200
3	415	32	22	61	75	90	95	119	265
4	210	33	50	62	55	91	130	120	15
5	98	34	50	63	115	92	40	121	250
6	350	35	50	64	125	93	35	122	190
7	140	36	140	65	90	94	55	123	130
8	305	37	185	66	135	95	63	124	50
9	205	38	160	67	38	96	45	125	80
10	245	39	140	68	195	97	рассохся	126	20
11	245	40	160	69	147	98	10	127	20
12	261	41	180	70	150	99	120	128	15
13	195	42	180	71	100	100	40	129	27
14	320	43	190	72	153	101	30	130	27
15	160	44	150	73	45	102	45	131	27
16	410	45	105	74	60	103	82	132	10
17	130	46	110	75	90	104	70	133	10
18	395	47	150	76	95	105	45	134	10
19	375	48	65	77	130	106	45	135	18
20	450	49	43	78	55	107	35	136	15
21	171	50	37	79	40	108	170	137	15
22	200	51	130	80	42	109	70	138-	
23	225	52	240	81	160	110	180	нижняя чел	пюсть, нет
24	240	53	100	82	90	111	190	162	68
25	195	54	225	83	13	112	145	163	78
26	130	55	150	84	15	113	190	164-1	
27	120	56	300	85	50	114	255	167, 168 нет	
28	145	57	150	86	52	115	125	169–179, 181	не измеряем
29	180	58	150	87	35	116	175	180	125

 $^{^{\}star}$ Промеры 83, 84 измеряли по оставшимся кончикам носовой кости.

Таблица 3. Промеры черепа местного саратовского скота* Table 3. Skull measurements of local Saratov cattle*

№ промера	Результат, мм	№ промера	Результат, мм						
1	440	30	200	59	80	88	90	117	250
2	425	31	75	60	90	89	120	118	205
3	400	32	30	61	70	90	100	119	267
4	205	33	65	62	52	91	120	120	15
5	90	34	50	63	120	92	45	121	230
6	355	35	50	64	125	93	37	122	215
7	130	36	130	65	90	94	52	123	115
8	310	37	152	66	105	95	70	124	45
9	205	38	152	67	35	96	50	125	80
10	235	39	130	68	190	97	обломан	126	20
11	251	40	153	69	125	98	7	127	18
12	260	41	130	70	135	99	105	128	18
13	175	42	120	71	90	100	35	129	25
14	305	43	115	72	140	101	22	130	28
15	155	44	145	73	40	102	42	131	28
16	402	45	100	74	65	103	75	132	20
17	130	46	120	75	80	104	65	133	14
18	390	47	145	76	90	105	40	134	14
19	370	48	55	77	125	106	43	135	24
20	425	49	38	78	60	107	58	136	23
21	150	50	30	79	42	108	152	137	23
22	190	51	155	80	37	109	70	138-	-161
23	195	52	250	81	180	110	170	нижняя че.	люсть, нет
24	235	53	95	82	100	111	170	162	62
25	200	54	220	83	10	112	150	163	68
26	135	55	305	84	18	113	175		66 нет
27	130	56	275	85	50	114	243		68 нет
28	150	57	305	86	51	115	120	169–179, 181	не измеряем
29	170	58	150	87	40	116	160	180	130

^{*} Самка 8 лет, промеры 83, 84 проводили по оставшимся кончикам носовой кости.

КРС, что на 15, 30, 49 и 65 мм превосходила данные черепов красной тамбовской, местной саратовской породы, великорусского и ревельского скота соответственно.

Череп красной тамбовской породы КРС по данному показателю превосходил местный саратовский, ревельский и великорусский скот на 15 мм, 34 мм и 50 мм соответственно. Длина черепа у местной саратовской породы КРС составила 440 мм, что на 19 мм и 35 мм больше по сравнению с представителями ревельского скота и великорусского скота соответственно.

Результаты измерений промера: ширина черепа над задними краями глазниц была в пределах от 175 до 215 мм. Череп альгауского скота по ширине превосходил результаты промеров у красной тамбовской и местной саратовской породы, великорусского и ревельского скота на 25 мм, 15 мм, 35 мм и 40 мм соответственно. Череп великорусского скота по данному показателю имел самый наименьший результат — 175 мм, что на 5 мм, 25 мм и 15 мм меньше, чем, соответственно, у черепов ревельского, местного саратовского скота и красной тамбовской породы КРС.

Таблица 4. Промеры черепа альгауского скота Table 4. Measurements of the skull of the Aligäu cattle

№ промера	Результат, мм	№ промера	Результат, мм						
1	470	30	215	59	85	88	125	117	270
2	450	31	80	60	100	89	131	118	245
3	430	32	40	61	90	90	100	119	290
4	210	33	80	62	52	91	130	120	15
5	130	34	60	63	120	92	60	121	250
6	345	35	60	64	130	93	45	122	200
7	155	36	155	65	100	94	65	123	120
8	322	37	180	66	100	95	80	124	40
9	230	38	165	67	35	96	45	125	80
10	250	39	155	68	210	97	рассохся	126	17
11	270	40	180	69	145	98	15	127	18
12	280	41	195	70	160	99	100	128	15
13	201	42	160	71	102	100	35	129	25
14	330	43	160	72	160	101	20	130	25
15	170	44	170	73	55	102	45	131	30
16	430	45	120	74	70	103	75	132	17
17	150	46	115	75	105	104	60	133	15
18	405	47	140	76	120	105	30	134	12
19	370	48	55	77	155	106	45	135	23
20	460	49	40	78	70	107	80	136	23
21	152	50	35	79	43	108	170	137	23
22	201	51	165	80	40	109	75	138-	-161
23	230	52	270	81	160	110	190	нижняя че	пюсть, нет
24	250	53	120	82	95	111	205	162	65
25	190	54	230	83	20	112	150	163	72
26	140	55	330	84	23	113	200	164-1	
27	130	56	280	85	60	114	270	167,16	
28	155	57	330	86	60	115	140	169–179, 181	не измеряем
29	190	58	180	87	40	116	190	180	150

^{*} Промеры 32, 83, 84 проводили по оставшимся кончикам носовой кости.

Таблица 5. Промеры черепа ревельского скота Table 5. Measurements of the skull of Revel cattle

№ промера	Результат, мм	№ промера	Результат, мм						
1	421	30	180	59	75	88	95	117	251
2	402	31	70	60	80	89	130	118	200
3	380	32	33	61	70	90	95	119	250
4	200	33	55	62	46	91	120	120	10
5	95	34	40	63	105	92	50	121	220
6	325	35	40	64	110	93	38	122	190
7	135	36	120	65	80	94	55	123	110
8	282	37	150	66	90	95	65	124	50
9	200	38	130	67	30	96	45	125	60
10	230	39	120	68	170	97	обломан	126	18
11	230	40	133	69	110	98	10	127	17
12	260	41	120	70	130	99	102	128	14
13	180	42	100	71	85	100	30	129	19
14	300	43	100	72	125	101	15	130	24
15	146	44	130	73	45	102	50	131	25
16	380	45	95	74	60	103	75	132	15
17	120	46	115	75	80	104	55	133	13
18	370	47	125	76	90	105	35	134	10
19	350	48	50	77	125	106	40	135	18
20	430	49	43	78	60	107	55	136	20
21	140	50	30	79	40	108	140	137	20
22	195	51	150	80	33	109	55	138-	
23	185	52	235	81	150	110	155	нижняя че.	люсть, нет
24	230	53	90	82	95	111	165	162	55
25	175	54	205	83	22	112	120	163	60
26	130	55	290	84	20	113	170	164-16	
27	120	56	255	85	40	114	230	167,16	
28	140	57	290	86	40	115	115	169–179, 181	·
29	150	58	155	87	30	116	162	180	120

^{*} Носовая кость на проволоке, есть дырки во лбу, на затылочной поверхности посередине, промеры 32, 83, 84 проводили по оставшимся кончикам носовой кости.

Показатель высоты средней части черепа у исследуемых экспонатов варьировал от 105 до 150 мм. Так, у черепа альгауского скота данный показатель был самый наибольший и составил 150 мм, что на 25 мм, 20 мм, 30 мм и 45 мм выше по сравнению с черепами красной тамбовской, местного саратовского, ревельского и великорусского скота соответственно. Средние результаты по данному показателю наблюдались у черепов красной тамбовской породы КРС, местного саратовского и ревельского скота и находились на одном уровне — 120-130 мм.

Самый наименьший результат наблюдался у черепа великорусского скота и составил 105 мм, что на 20 мм и 25 мм меньше по сравнению с данными у черепов красной тамбовской породы КРС, местного саратовского и ревельского скота соответственно.

В результате проведенных измерений полученные данные позволяют произвести детальное описание и сравнительную характеристику строения черепов разных пород крупного рогатого скота.

Фотография черепа альгауского скота представлена на рисунке 6.

Череп альгауского скота характеризуется вытянутостью в длину и средними размерами в ширину. Лоб плоский. От глаз к концу морды череп постепенно сужается. Очертания черепа прямолинейные, затылочный гребень ровный, прямой. Роговые стержни отходят прямо от черепа. Мощные рога направлены в стороны, широкие у основания и сужающиеся к немного закругленным кончикам. Восходящие ветви межчелюстной кости имеют прямое направление.

Фотография черепа великорусского скота представлена на рисунке 7.

Череп великорусского скота характеризуется относительно коротким размером в длину и малым — в ширину. Лоб плоский. Восходящие ветви межчелюстной кости имеют косое направление, сужающееся к морде. Рога короткие, направлены немного в сторону и приподняты вверх.

Фотография черепа местного саратовского скота представлена на рисунке 8.

Череп местного саратовского скота характеризуется длинным и узким лбом. Морда средней длины, узкая. Затылок высокий, широкий. Рога мощные, направлены назад и в стороны. Восходящие ветви межчелюстной кости имеют прямое направление.

Фотография черепа ревельского скота представлена на рисунке 9.

Череп ревельского скота характеризуется лбом средней длины и ширины с узким лицевым отделом средней длины. Затылок высокий, средней ширины. Рога устремлены перпендикулярно вверх, с сужающимися кончиками с-образной формы.

Фотография черепа красной тамбовской породы КРС представлена на рисунке 10.

Череп красной тамбовской породы характеризуется вытянутостью в длину и размерами в ширину. Лоб широкий. Мощные рога устремлены в стороны, с немного закругленными кончиками, приподнятыми вверх. Восходящие ветви межчелюстной кости имеют прямое направление. Относится к типу Bos taurus frontosus (широколобый).

Изучение эволюции демографической истории пород сельскохозяйственных животных становится возможным благодаря вовлечению в исследования исторических ископаемых образцов.

Рис. 6. Череп альгауского скота. Фото автора

Fig. 6. Skull of the Algau cattle. Author's photo

Рис. 7. Череп великорусского скота. Фото автора

Fig. 7. Skull of Great Russian cattle. Author's photo

Рис. 8. Череп саратовского скота местного разведения.

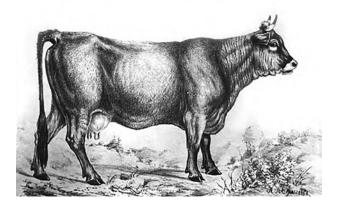
Fig. 8. The skull of the local Saratov cattle. Author's photo

Рис. 9. Череп ревельского скота. Фото автора Fig. 9. The skull of the Revel cattle. Author's photo

Рис. 10. Череп красной тамбовской породы КРС. Фото автора Fig. 10. Skull of the red Tambov cattle breed. Author's photo

Сегодня разработаны методы, позволяющие получать ДНК, пригодную для проведения широкого спектра молекулярно-генетических исследований как митохондриальной, так и ядерной ДНК, включая анализ на уровне индивидуальных генов и полных геномов. Развитие исследований с привлечением дополнительного числа исторических образцов и расширение спектра используемых ДНК-маркеров позволят получить новые данные об эволюции отечественного аллелофонда пород за последнее столетие.

Особый интерес для науки представляет изучение молекулярно-генетической структуры остеологического материала из коллекции музея. Большинство музейных экспонатов насчитывают возраст более 100 лет, что позволяет оценить структуру пород в те времена и сравнить с современными представителями. Сравнительное исследование различных методов экстракции ДНК из костных образцов крупного рогатого скота, сохраняемых в краниологической коллекции музея, началось совместно с Федеральным исследовательским центром животноводства — ВИЖ им. академика Л.К. Эрнста в 2015 году.


Развитие молекулярно-генетических методов дает возможность более детально изучить происхождение и историю формирования пород сельскохозяйственных животных и их продуктивные качества. Для проведения данных исследований используются образцы костей и зубов из коллекции музея.

Несмотря на то что после смерти организма ДНК разрушается в ходе различных ферментативных реакций, при благоприятных условиях молекулы ДНК способны сохраняться очень длительное время (порядка сотен и тысяч лет). Мягкие ткани живых организмов не сохраняются или сохраняются очень плохо, поэтому для получения ДНК используются главным образом костные останки [8–10].

Самыми оптимальными субстратами для получения ДНК считают внутреннюю часть височной кости и слой цемента в корнях зубов, при этом значительной разницы в содержании ДНК между двумя субстратами не выявлено.

Стоит отметить, что при измельчении и растворении костной ткани исследователю приходится очень непросто, так как данный биоматериал очень трудно поддается данным процедурам. Кроме того, исторические образцы костей и зубов достаточно часто содержат большое количество ингибиторов ПЦР, которые экстрагируются совместно с ДНК. Древняя ДНК бывает повреждена в достаточно сильной степени, в связи с чем следует

Puc. 11. Альгауский скот. Рисунок из коллекции музея **Fig. 11.** Algau cattle. Figure from the museum collection

избегать чрезмерно агрессивных обработок материала, таких как высокие температуры и использование сильных детергентов.

Существует несколько способов выделения древней ДНК, включая осаждение этанолом или изопропанолом, концентрирование ДНК с использованием мембран и связывание ДНК с диоксидом кремния [11, 12].

Стоит отметить, что основная проблема при изучении ископаемой ДНК — загрязнение экстрактов или реагентов молекулами современной ДНК [6, 7].

В начале работы с ископаемыми пробами ставился вопрос о наличии соответствии ДНК историческим образцам. В результате многолетних исследований были сформулированы следующие критерии аутентичности: проведение в каждой партии образцов реакции с «чистым экстрактом», то есть без использования ископаемой ДНК; исследование каждого образца в дубликатах с последующим сравнением полученных результатов; контроль длины получаемых фрагментов (наличие продуктов ПЦР длиной более 500–700 п. н. может вызвать подозрение) [12–16].

Соблюдение всех вышеперечисленных критериев является обязательным условием при работе с древними ископаемыми образцами. Минимальными требованиями для проведения работы с такой ДНК считают: наличие физически изолированной рабочей зоны, в которой ведутся все этапы работы до стадии амплификации; использование отрицательных контролей при амплификации; повторяемость результатов, получаемых из разных экстракций ДНК одного и того же образца.

Выделение ДНК позволяет определить признаки пород КРС, которые не существуют на сегодняшний день. Данная работа будет способствовать улучшению селекции пород крупного рогатого скота, повышению их адаптированности к неоднородному суровому климату больших территорий России.

Краткая характеристика утраченных пород КРС

В коллекции музея сохранились черепа следующих пород, утраченных на сегодняшний день: альгауский скот (к настоящему времени чистокровный утрачен), великорусский скот (утрачен), красная тамбовская (практически исчезла), ревельский (практически утрачен), саратовский (утрачен), тушинский скот (утрачен).

Рассмотрим данные породы подробнее.

Альгауский скот. Местный баварский скот, разводившийся в горных районах Альгёй (Allgau, Германия). Чистый альгауский скот к настоящему времени утрачен вследствие скрещивания со швицкой породой.

Рис. 12. Великорусский скот. Фото из коллекции музея **Fig. 12.** Great Russian cattle. Figure from the museum collection

Этой породной группе характерно молочное направление продуктивности (рис. 11) [3].

В Россию завезен в XIX в., разводился в чистоте и использовался для скрещивания. Скрещивание альгауского с местным скотом бывшей Костромской губернии явилось началом формирования костромской породы. По литературным источникам XIX в., этот скот считали молочной породой с годовым удоем 1500–2440 «кружек» (1/10 ведра).

Великорусский скот. Эта породная группа КРС была распространена в европейской части России (средняя и северная зоны). Великорусский скот является предком значительного числа местных пород и отродий. От него образовались ярославская порода и мисковское отродье, красная белорусская и истобенская породы, а также многочисленные более или менее обособленные гнезда крупного рогатого скота, известные ранее как каргопольское, северо-двинское, печорское, тавдинское, приокское, мещерское, верхнеднепровское (или дорогобужское), пришекснинское, домшинское, юркинское, бестужевское, тагильское и др. [3] (рис. 12.). Великорусский скот характеризовался большой вариацией в отношении признаков и хозяйственных качеств. Высота в холке у коров в среднем равнялась 110-118 см, живая масса около 310-340 кг. Средний удой составлял 1400-1800 кг молока с содержанием жира 4,1-4,3%. Масть животных черная, черно-пестрая, красная и красно-пестрая. Иногда встречаются животные бурой и белой окраски. Направление продуктивности — молочное [3].

Красная тамбовская порода. Сформировалась к концу XIX в. на основе скрещивания местного великорусского скота с завезенными в Воронежскую и Тамбовскую губернии тирольской, швицкой, симментальской и холмогорской породами. Образовалась относительно однородная группа животных, отличающихся высокой молочной продуктивностью и хорошими мясными качествами. Новая порода была утверждена в 1948 г. Направление продуктивности — универсальное (рис. 13).

Животные красной тамбовской породы крупные, гармоничного сложения, крепкой конституции, средней скороспелости. Высота в холке 129–134 см, живая масса взрослых коров 470–500 кг, быков — 900–1000 кг. Молочная продуктивность 2500–3000 кг молока с содержанием жира 3,6–3,8%. Масть животных вишнево-красная и буро-красная с темными подпалинами на конце морды и конечностях. В настоящее время порода практически исчезла [3].

Ревельский скот сформировался в 1873 г. на основе скрещивания местного скота с голландской породой, завезенной из Голландии, и остфрисландской и фризской, завезенных из Германии. Животные разводились в различных имениях Ревельского уезда Эстляндской губернии (ныне Эстония) (рис. 14).

Скот молочного направления продуктивности обладал достаточно высокой скороспелостью. Живая масса взрослых быков составляла 650–800 кг, убойная масса — 350–400 кг. Живая масса коров 480–500 кг, убойная — 200–210 кг. Телки при хорошем кормлении пускались в случку в возрасте 24–26 месяцев, а бычки — в 20–24 месяца. В среднем годовые надои коров составляли 2400–2700 кг молока. В настоящее время порода не сохранилась [3].

Саратовский скот получен в условиях Саратовской губернии путем скрещивания местного скота с симментальским, калмыцким, швицким, бестужевским и альгауским скотом (рис. 15).

Рис. 13. Корова красной тамбовской породы. Фото из коллекции музея


Fig. 13. A red Tambov breed cow. Figure from the museum collection

Puc. 14. Ревельский скот. Фото из коллекции музея **Fig. 14.** Revel cattle. Figure from the museum collection

Рис. 15. Саратовский скот. Фото из коллекции музея **Fig. 15.** Saratov cattle. Figure from the museum collection

Введение симменталов в стада было обусловлено их выносливостью к климатическим и кормовым условиям Саратовской губернии, так как они не теряют своего значения как мясной скот даже при скудном питании. Живая масса помесных коров — 320–350 кг, молочная продуктивность — 1800–2100 кг. Направление продуктивности — мясное. В настоящее время порода исчезла [3].

Стоит отметить, что результаты проведенных совместно с Федеральным исследовательским центром животноводства — ВИЖ им. академика Л.К. Эрнста [12] исследований генофонда российских пород крупного рогатого скота, с одной стороны, способствуют сохранению и детальному изучению аутентичных геномных компонентов, необходимых для поддержания устойчивости систем сельскохозяйственного производства в будущем, а с другой — позволяют сохранить важнейшие национальные генетические ресурсы нашей страны. Сравнение современных и исторических образцов

на геномном уровне с привлечением набора ДНК-маркеров может дать результаты, которые найдут применение при разработках программ сохранения пород, а также в селекции при создании органических систем производства, основанных на использовании отечественных генетических ресурсов [12].

Детальное изучение краниометрических параметров черепов сельскохозяйственных животных позволяет более полно охарактеризовать состояние и историческое развитие пород крупного рогатого скота более чем за вековой период.

Исходя из вышесказанного можно заключить, что исследование исторических музейных экспонатов (черепов) позволит получить новые данные об эволюции отечественного аллелофонда пород КРС и сравнить их с современными популяциями.

Выводы / Conclusion

Уникальная краниологическая коллекция, хранящаяся в музее, позволяет исследовать особенности различных пород крупного рогатого скота, что в конечном итоге может быть использовано при создании новых высокопродуктивных пород. Данная работа вносит свой вклад в укрепление продовольственной безопасности России, что так необходимо в сегодняшние дни.

Все проводимые краниологические исследования по породам крупного рогатого скота стали возможны благодаря уникальной коллекции, собранной академиком Е.Ф. Лискуном. Научный талант, интуиция и богатейший опыт ученого, который смотрел в будущее на многие годы вперед, позволяют и сегодня совершенствовать животноводство нашей страны.

Все авторы несут ответственность за свою работу и представленные данные.

Все авторы внесли равный вклад в эту научную работу. Авторы в равной степени участвовали в написании рукописи и несут равную ответственность за плагиат.

Авторы заявляют об отсутствии конфликта интересов.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Лискун Е.Ф. Методика краниологических исследований. Доклад на XXII съезде естествоиспытателей и врачей. СПб.: Изд. Бюро по зоотехнии Деп. земледелия Учен. ком. Гл. упр. землеустройства и земледелия. 1910; 3: 62.
- 2. Convention for the Protection of the World Cultural and Natural Heritage. *United nations educational, scientific and cultural organisation. Adopted by the General Conference at its seventeenth session. 16 november 1972.* Paris, 1972; 16. http://whc.unesco.org/archive/convention-en.pdf
- 3. Боронецкая О.И. и др. Каталог краниологической коллекции Государственного музея животноводства им. Е.Ф. Лискуна. М.: *Изд-во PГАУ-МСХА*. 2012; 148.
- 4. Климов А.Ф. Анатомия домашних животных. М.: 1955; 1: 84-134.
- 5. Туников Г.М., Быстрова И.Ю. Биологические основы продуктивности крупного рогатого скота. Разань: *ЗАО «Приз»*. 2014; 368. eLIBRARYID: 22524580
- 6. Cooper A., Poinar H.N. Ancient DNA: do it right or not at all. *Science*. 2000; 289 (5482): 1139. DOI: 10.1126/science.289.5482.1139b
- 7. Hänni C., Brousseau T., Laudet V., Stehelin D. Isopropanol precipitation removes PCR inhibitors from ancient bone extracts. *Nucleic Acids Research*. 1995; 23 (5): 881–882. DOI: 10.1093/nar/23.5.881
- 8. Hagelberg E., Sykes B., Hedges R. Ancient bone DNA amplified. *Nature*. 1989; 342 (6249): 485. DOI: 10.1038/342485a0
- 9. Pääbo S., Higuchi R.G., Wilson A.C. Ancient DNA and the polymerase chain reaction. The emerging field of molecular archaeology. *J. Biol Chem.* 1989; 264 (17): 9709–9712.
- 10. Ward R., Stringer C.A molecular handle on the Neanderthals. *Nature*. 1997; 388: 225–226. DOI: 10.1038/40746
- 11. Абдельманова А.С. и др. Методы экстракции ДНК из костных образцов крупного рогатого скота, сохраняемых в краниологической коллекции. *Сельскохозяйственная биология*. 2019; 54 (6): 1110–1121. DOI: 10.15389/agrobiology.2019.6.1110rus
- 12. Зиновьева Н.А. и др. Генетические ресурсы животных: развитие исследований аллелофонда российских пород крупного рогатого скота миниобзор. *Сельскохозяйственная биология*. 2019; 54 (4): 631–641.DOI: 10.15389/agrobiology.2019.4.631rus
- 13. Groeneveld L.F. *et al.* Genetic diversity in farm animals a review. *Anim Genet.* 2010; 41 (1): 6–31. DOI: 10.1111/j.1365-2052.2010.02038.x
- 14. Кораблев П.Н., Кораблев Н.П., Кораблев М.П. Векторы влияния основных факторов на степень выраженности полового диморфизма краниометрических признаков у млекопитающих. *Успехи современной биологии*. 2014; 134 (1): 73–80. eLIBRARY ID: 21290321
- 15. Лискун Е.Ф. Задачи краниологии. СПб.: Изд. Мин-во земледелия и гос. имущества. 1903; 33.
- 16. The state of the world's animal genetic resources for food and agriculture. Commission on Genetic Resources for Food and Agriculture of the Food and Agriculture Organization of the United Nations. Rome, 2007.

All authors bear responsibility for the work and presented data.

All authors have made an equal contribution to this scientific work. The authors were equally involved in writing the manuscript and bear the equal responsibility for plagiarism.

The authors declare no conflict of interest.

REFERENCES

- 1. Liskun E.F. Methodology of craniological studies. Report at the XXII Congress of Naturalists and Doctors. St. Petersburg: Publishing House of the Bureau of Zootechny of the Department of Agriculture of the Scientific Committee of the Main Directorate of Land Management and Agriculture: 1910; 3: 62.
- 2. Convention for the Protection of the World Cultural and Natural Heritage. *United nations educational, scientific and cultural organisation. Adopted by the General Conference at its seventeenth session. 16 november 1972.* Paris, 1972; 16. http://whc.unesco.org/archive/convention-en.pdf
- 3. Boronetskaya O.I. *et al.* Catalogue of the craniological collection of the State Museum of Animal Husbandry named after E.F. Liskun. Moscow: *Publishing House of the Russian State Agrarian University Moscow Timiryazev Agricultural Academy.* 2012; 148 (In Russian).
- 4. Klimov A.F. Anatomiya domashnikh zhivotnykh. Moscow: *Publishing house of agricultural literature*. 1955; I: 84–134 (In Russian).
- 5. Tunikov G.M., Bystrova IYu. Biological foundations of cattle productivity. Razan: *Prize.* 2014; 368. eLIBRARY ID: 22524580 (In Russian).
- 6. Cooper A., Poinar H.N. Ancient DNA: do it right or not at all. *Science*. 2000; 289 (5482): 1139. DOI: 10.1126/science.289.5482.1139b
- 7. Hänni C., Brousseau T., Laudet V., Stehelin D. Isopropanol precipitation removes PCR inhibitors from ancient bone extracts. *Nucleic Acids Research*. 1995; 23 (5): 881–882. DOI: 10.1093/nar/23.5.881
- 8. Hagelberg E., Sykes B., Hedges R. Ancient bone DNA amplified. *Nature*. 1989; 342 (6249): 485. DOI: 10.1038/342485a0
- 9. Pääbo S., Higuchi R.G., Wilson A.C. Ancient DNA and the polymerase chain reaction. The emerging field of molecular archaeology. *J. Biol Chem.* 1989; 264 (17): 9709–9712.
- 10. Ward R., Stringer C.A molecular handle on the Neanderthals. *Nature*. 1997; 388: 225–226. DOI: 10.1038/40746
- 11. Abdelmanova A.S. *et al.* Comparative study of different methods of DNA extraction from cattle bones specimens maintained in a craniological collection. *Agricultural Biology.* 2019; 54 (6): 1110–1121. DOI: 10.15389/agrobiology.2019.6.1110rus (In Russian).
- 12. Zinovieva N.A. *et al.* Animal genetic resources: developing the research of allele pool of russian cattle breeds minireview. *Agricultural Biology (Sel-skokhozyaystvennaya biologiya)*. 2019; 54 (4): 631–641. DOI: 10.15389/agrobiology.2019.4.631rus (In Russian).
- 13. Groeneveld L.F. et al. Genetic diversity in farm animals a review. Anim Genet. 2010; 41 (1): 6-31. DOI: 10.1111/j. 1365-2052.2010.02038.x
- 14. Korablev P.N., Korablev N.P., Korablev M.P. The main factors affected the degree of sexual dimorphism of mammalian craniometrical characteristics. *Biology Bulletin Reviews (Uspekhi sovremennoy biologii)*. 2014; 134 (1): 73-80. eLIBRARYID: 21290321 (In Russian).
- 15. Liskun Ye.F. Tasks of craniology. St. Petersburg: Publishing House of the Ministry of Agriculture and State Property. 1903; 33 (In Russian).
- 16. The state of the world's animal genetic resources for food and agriculture. Commission on Genetic Resources for Food and Agriculture of the Food and Agriculture Organization of the United Nations. Rome, 2007.

ОБ АВТОРАХ:

Владимир Иванович Трухачев,

доктор сельскохозяйственных наук, доктор экономических наук, академик РАН, ректор,

Российский государственный аграрный университет — MCXA им. К.А. Тимирязева,

ул. Тимирязевская, 49, Москва, 127434, Российская Федерация

rector@rgau-msha.ru https://orcid.org/0000-0002-4650-1893

Оксана Игоревна Боронецкая,

оксана и оревна воронецкая, кандидат сельскохозяйственных наук, директор Музея животноводства им. Е.Ф. Лискуна, Российский государственный аграрный университет — МСХА им. К.А. Тимирязева, ул. Тимирязевская, 49, Москва, 127434, Российская Фрагасция

Федерация

liskun@rgau-msha.ru https://orcid.org/0000-0001-8389-5572

Артем Михайлович Остапчук,

кандидат биологических наук, заведующий демонстрационно-методическим сектором Музея животноводства им. Е.Ф. Лискуна,

Российский государственный аграрный университет — МСХА им. К.А. Тимирязева, ул. Тимирязевская, 49, Москва, 127434, Российская

, Федерация

artem.ostapchuk.1993@list.ru https://orcid.org/0000-0002-9202-8611

Юсупжан Артыкович Юлдашбаев.

доктор сельскохозяйственных наук, академик РАН, профессор,

Российский государственный аграрный университет — МСХА им. К.А. Тимирязева, ул. Тимирязевская, 49, Москва, 127434, Российская Федерация

zoo@rgau-msha.ru https://orcid.org/0000-0002-7150-1131

Анатолий Петрович Каледин,

доктор биологических наук, профессор

Российский государственный аграрный университет — МСХА им. К.А. Тимирязева, ул. Тимирязевская, 49, Москва, 127434, Российская

Федерация

apk-bird@mail.ru

https://orcid.org/0000-0002-1769-5043

Анатолий Викторович Овчинников,

доктор сельскохозяйственных наук, профессор Российский государственный аграрный университет — МСХА им. К.А. Тимирязева, ул. Тимирязевская, 49, Москва, 127434, Российская

Федерация

aovchinnikov@rgau-msha.ru https://orcid.org/0000-0002-0323-4641

Александра Витальевна Тютюнникова,

кандидат сельскохозяйственных наук, старший лаборант Музея животноводства им. Е.Ф. Лискуна, Российский государственный аграрный университет МСХА им. К.А. Тимирязева,

ул. Тимирязевская, 49, Москва, 127434, Российская Федерация

liskun@rgau-msha.ru https://orcid.org/0000-0002-1526-9411

Ирина Сергеевна Рубцова,

старший лаборант Музея животноводства им. Е.Ф. Лискуна, Российский государственный аграрный университет MCXA им. К.А. Тимирязева,

ул. Тимирязевская, 49, Москва, 127434, Российская Федерация liskun@rgau-msha.ru https://orcid.org/0000-0001-6125-4109

Анастасия Сергеевна Гриничева,

главный хранитель Музея животноводства им. Е.Ф. Лискуна, Российский государственный аграрный университет — МСХА им. К.А. Тимирязева,

ул. Тимирязевская, 49, Москва, 127434, Российская Федерация

liskun@rgau-msha.ru https://orcid.org/0000-0002-2489-7778

Александр Александрович Николаев,

младший научный сотрудник, Федеральный исследовательский центр животноводства— ВИЖ им. академика Л.К. Эрнста,

пос. Дубровицы, д. 60, городской округ Подольск, Московская область, 142132, Российская Федерация alexandralces@yandex.ru

https://orcid.org/0000-0001-9355-3285

ABOUT THE AUTHORS:

Vladimir Ivanovich Trukhachev, Doctor of Agricultural Sciences, Doctor of Economics, Academician of the Russian Academy of Sciences, Rector, Russian State Agrarian University — K.A. Timiryazev Agricultural Academy, 49 Timiryazevskaya Str., Moscow, 127434, Russian Federation

rector@rgau-msha.ru https://orcid.org/0000-0002-4650-1893

Oksana Igorevna Boronetskaya,

Candidate of Agricultural Sciences, Director of the E.F. Liskun Museum of Animal Husbandry,

Russian State Agrarian University — K.A. Timiryazev Agricultural

49 Timiryazevskaya Str., Moscow, 127434, Russian Federation liskun@rgau-msha.ru https://orcid.org/0000-0001-8389-5572

Artem Mikhailovich Ostapchuk,Candidate of Biological Sciences, Head of the Demonstration and Methodological Sector of the E.F. Liskun Museum of Animal

Russian State Agrarian University — K.A. Timiryazev Agricultural

49 Timiryazevskaya Str., Moscow, 127434, Russian Federation artem.ostapchuk.1993@list.ru https://orcid.org/0000-0002-9202-8611

Yusupzhan Artykovich Yuldashbaev,

Doctor of Agricultural Sciences, Academician of the Russian Academy of Sciences, Professor, Russian State Agrarian University — K.A. Timiryazev Agricultural

Academy.

49 Timiryazevskaya Str., Moscow, 127434, Russian Federation zoo@rgau-msha.ru https://orcid.org/0000-0002-7150-1131

Anatoly Petrovich Kaledin,

Doctor of Biological Sciences, Professor,

Russian State Agrarian University — Timiryazev Agricultural

49 Timiryazevskaya Str., Moscow, 127434, Russian Federation apk-bird@mail.ru https://orcid.org/0000-0002-1769-5043

Anatoly Viktorovich Ovchinnikov,

Doctor of Agricultural Sciences, Professor, Russian State Agrarian University — K.A. Timiryazev Agricultural Academy.

49 Timiryazevskaya Str., Moscow, 127434, Russian Federation aovchinnikov@rgau-msha.ru https://orcid.org/0000-0002-0323-4641

Alexandra Vitalievna Tyutyunnikova, Candidate of Agricultural Sciences,

Senior Laboratory Assistant at the E.F. Liskun Museum of Animal Husbandry

Russian State Agrarian University — K.A. Timiryazev Agricultural

Academy, 49 Timiryazevskaya Str., Moscow, 127434, Russian Federation liskun@rgau-msha.ru https://orcid.org/0000-0002-1526-9411

Irina Sergeevna Rubtsova,

Senior Laboratory Assistant at the E.F. Liskun Museum of Animal Husbandry

Russian State Agrarian University — K.A. Timiryazev Agricultural Academy,

49 Timiryazevskaya Str., Moscow, 127434, Russian Federation liskun@rgau-msha.ru

https://orcid.org/0000-0001-6125-4109

Anastasia Sergeevna Grinicheva,

Chief Curator of the E.F. Liskun Museum of Animal Husbandry, Russian State Agrarian University — K.A. Timiryazev Agricultural Academy,

49 Timiryazevskaya Str., Moscow, 127434, Russian Federation liskun@rgau-msha.ru https://orcid.org/0000-0002-2489-7778

Alexander Aleksandrovich Nikolaev,

Junior Researcher, Federal Research Center of Animal Husbandry — VIZ Academician L.K. Ernst,

60 Dubrovitsy village, Podolsk City district, Moscow region, 142132, Russian Federation alexandralces@yandex.ru

https://orcid.org/0000-0001-9355-3285