УДК 576.5:57.085.23: 636.59

Научная статья

Открытый доступ

DOI: 10.32634/0869-8155-2023-368-3-53-57

Притужалова А.О.¹, Волкова Н.А.², Кузьмина Т.И.¹, Ветох А.Н.², Джагаев А.Ю.²

¹ Всероссийский научноисследовательский институт генетики и разведения сельскохозяйственных животных — филиал Федерального государственного бюджетного научного учреждения «Федеральный исследовательский центр животноводства — ВИЖ им. академика Л.К. Эрнста», Санкт-Петербург, Российская Федерация

² Федеральный исследовательский центр животноводства — ВИЖ им. академика Л.К. Эрнста, пос. Дубровицы, Московская область, Российская Федерация

aklevakina14@mail.ru

Поступила в редакцию: 28.11.2022

Одобрена после рецензирования: 15.01.2023

Принята к публикации: 28.02.2023

Research article

Open access

DOI: 10.32634/0869-8155-2023-368-3-53-57

Anna O. Prituzhalova¹, Natalia A. Volkova², Tatyana I. Kuzmina¹, Anastasia N. Vetokh², Alan Yu. Dzhagaev²

- ¹ All-Russian Research Institute of Genetics and Breeding of Farm Animals – a branch of the Federal State Budgetary Scientific Institution «L.K. Ernst Federal Research Center for Animal Husbandry», St. Petersburg, Russian Federation
- ² L.K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy, Moscow region, Russian Federation

Received by the editorial office: 28 11 2022

Accepted in revised: 15.01.2023

Accepted for publication: 28.02.2023

Мониторинг показателей статуса хроматина в клетках гранулезы овариальных фолликулов перепелов разного направления продуктивности

РЕЗЮМЕ

Актуальность. Выявление и анализ причин, снижающих показатели яичной продуктивности — актуальная проблема перепеловодства. Цель настоящего исследования — оценка деструктивных процессов в соматических клетках овариальных фолликулов (уровень апоптозов и пикнозов) половозрелых несушек перепелов разного направления продуктивности в связи с яйценоскостью и качественными показателями яиц.

Методы. В экспериментах оценивали уровень апоптозов и пикнозов в клетках гранулезы овариальных фолликулов 3–8 мм самок эстонской, маньчжурской, английской белой, смокинговой, английской черной и фараон пород перепелов. Перепела содержались в индивидуальных клетках монопородными парами при приглушенном 14-часовом световом дне. Возраст самок составлял 160–180 суток. Уровень пикнотических клеток оценивали цитологическим методом Тагкомзкі, апоптотические процессы анализировали путем окрашивания флуорохромами, пропидиум-иодидом и акридин-оранжевым (10 мкг/мл PI/AO).

Результаты. В ходе цитологических исследований выявлены две породы перепелов, показавшие в среднем значении наиболее высокий процент клеток с дегенерированным хроматином по сравнению с остальными породами, — смокинговая и английская черная (40% и 51% против 13%, 17,12% и 14%, ρ < 0,01). Итоги исследования деструкции хроматина с помощью PI/AO показали высокий средний процент апоптотических клеток почти у всех пород, кроме английской белой (36%, 36%, 42%, 52% и 43% против 22%, ρ < 0,05). Максимальная доля мертвых клеток гранулезы тестирована среди несушек пород смокинговая и английская черная (52% и 43% соответственно). При этом английская белая порода в возрасте 183 дней имеет один из лучших показателей яйценоскости и доли желтка по отношению к массе яйца, что свидетельствует о возможности пролонгирования периода их использования в качестве несушек.

Ключевые слова: фолликул, гранулеза, хроматин, апоптоз, пикноз, яичная продуктивность, *Coturnix* coturnix

Для цитирования: Притужалова А.О., Волкова Н.А., Кузьмина Т.И., Ветох А.Н., Джагаев А.Ю. Мониторинг показателей статуса хроматина в клетках гранулезы овариальных фолликулов перепелов разного направления продуктивности. *Аграрная наука*. 2023; 368 (3): 53–57, https://doi.org/10.32634/0869-8155-2023-368-3-53-57

© Притужалова А.О., Волкова Н.А., Кузьмина Т.И., Ветох А.Н., Джагаев А.Ю.

Monitoring of indicators of chromatin status in quails ovarian follicles granulosa cells of different directions of productivity

ABSTRACT

Relevance. Identification and analysis of the reasons for reducing egg productivity is an urgent problem in quail breeding. The aim of this study is to assess the destructive processes in the somatic cells in ovarian follicles (the level of apoptosis and pycnosis) of mature quail layers of different productivity in connection with egg production and quality indicators of eggs.

Methods. In experiments, the level of apoptosis and pyknosis in granulosa cells of ovarian follicles of 3–8 mm females of Estonian, Manchurian, English white, tuxedo, English black and Pharaoh breeds was evaluated. The quails were kept in individual cages in monopreed pairs with a muted 14-hour light day. The age of the females was 160–180 days. The level of pycnotic cells was assessed by the Tarkowski cytological method, apoptotic processes were analyzed by staining with fluorochromes, propidium iodide and acridine orange (10 mcg/ml PI/AO).

Results. chromatin. The results of the study of chromatin destruction using PI/AO showed a high average percentage of apoptotic cells in almost all breeds except the p < 0.05). The maximum proportion of dead granulosa cells was tested in Tuxedo and English Black layers (52% and 43% respectively). At the same time, the English white breed of quails at the age of 183 days has one of the best indicators of egg production and the proportion of yolk in relation to egg weight, which indicates the possibility of prolonging the period of their use as laying hens.

Key words: Follicle, granulosa, chromatin, apoptosis, pycnosis, egg production, Coturnix coturnix

For citation: Prituzhalova A.O., Volkova N.A., Kuzmina T.I., Vetokh A.N., Dzhagaev A.Yu. Monitoring of indicators of chromatin status in quails ovarian follicles granulosa cells of different directions of productivity. *Agrarian science*. 2023; 368 (3): 53–57, https://doi.org/10.32634/0869-8155-2023-368-3-53-57 (In Russian)

© Prituzhalova A.O., Volkova N.A., Kuzmina T.I., Vetokh A.N., Dzhagaev A.Yu.

Введение / Introduction

Перепеловодство — относительно новое, активно развивающееся направление птицеводства, сосредоточенное в основном в коллективных фермерских и личных подсобных хозяйствах [1, 2]. Короткий срок инкубации яиц, интенсивный рост, скороспелость и короткий срок производственного цикла дают возможность получать до двух-трех поколений птицы с высоким выходом продукции, что дает большое преимущество перед другими видами сельскохозяйственной птицы. Яичное направление в перепеловодстве особенно выгодно с экономической точки зрения. При начале яйцекладки самок в 35-45-дневном возрасте за год можно получить до 2,5 кг яичной массы, что превосходит вес самой перепелки в 20 раз [3, 4]. Но необходимо учитывать особенности породы и их направленность, так как почти все породы перепелов являются смешанными по продуктивным показателям. В связи с этим возникают вопросы, на каком этапе производственного цикла становится экономически нерентабельным содержание несушек и какая порода перепелов является наиболее продуктивной в яичном направлении.

Особенностями развития птичьих фолликулов определяется репродуктивная функция птиц. В репродуктивном периоде только 5% фолликулов развиваются в преовуляторные фолликулы, а большинство мелких желтых фолликулов (< 8 мм в диаметре) переходят в атретические и реабсорбируются [5]. Обычно в пиковый период яйцекладки только один маленький желтый фолликул селектируется в день, чтобы соответствовать иерархии преовуляторных фолликулов, и начинается быстрый рост с окончательной дифференцировкой при подготовке к овуляции. Очевидно, что познание этапов фолликулогенеза и вовлечение в этот процесс соматических клеток фолликулов (их пролиферативная активность, деструктивные процессы) позволят проследить формирование яйцеклеток и улучшить их качество. До сих пор механизмы селекции доминантного фолликула окончательно не выяснены.

Цель исследования — оценка деструктивных процессов в соматических клетках овариальных фолликулов (уровень апоптозов и пикнозов) половозрелых несушек перепелов разного направления продуктивности в связи с показателями их продуктивности.

Материал и методы исследования / Material and methods

Исследования проводились на базе Федерального государственного бюджетного научного учреждения «Федеральный исследовательский центр животноводства — ВИЖ им. академика Л.К. Эрнста. Объектом исследований являлись перепела следующих пород: эстонская, маньчжурская, английская белая, смокинговая,

английская черная, фараон. Исследование проводилось в соответствии с принципами биоэтики (Европейская конвенция о защите позвоночных животных для экспериментальных и других научных целей, 1986 г.). Перепела содержались в индивидуальных клетках монопородными парами при приглушенном 14-часовом световом дне. Возраст самок составлял 160-180 суток. Кормление птицы осуществляли в соответствии с нормами кормления промышленным комбикормом для продуктивных перепелов (с обменной энергией 2900 ккал/ кг) один раз в день, вода — в постоянном доступе. Для инкубации отбирали яйца правильной формы, без загрязнений, боя. Срок хранения составлял не более трех суток. Инкубация проводилась в течение 17 дней в инкубаторах R-COM MARU DELUXE 180 (Rcom, Южная Корея) при дифференцированном режиме от 38,2°C в 1-е сутки с понижением до 37,2°C на 14-е сутки и повышением влажности перед выводом до 65-70%. По результатам инкубации была проведена оценка выводимости поголовья, проанализированы стадии гибели эмбрионов.

Оценку качества яиц в количестве 20 шт от каждой особи проводили по следующим показателям: высота желтка, диаметр желтка, доля желтка к массе яйца [6].

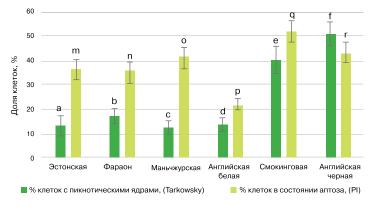
Клетки гранулезы вместе с фолликулярной жидкостью отбирались из белых фолликулов (n=22, число повторностей — 3) яичников перепелок-несушек post mortem (рис. 1).

Аспирации подвергались фолликулы с высоким тургором и обширной сетью капилляров. Фолликулярная жидкость центрифугировалась в течение 7 мин. при 1000 об./ мин., после чего осадок в виде клеток гранулезы отправлялся на цитогенетический анализ. Для определения статуса хроматина (уровня пикноза) в клетках гранулезы овариальных фолликулов использовали цитологический метод. Клетки гранулезы помещали на 5-10 мин. в теплый (37°C) 0,9%-ный гипотонический раствор трехзамещенного цитрата натрия, после чего переносили на сухое обезжиренное стекло и фиксировали смесью метанола и уксусной кислоты (3:1). Суховоздушные препараты клеток гранулезы окрашивали 4%-ным раствором Романовского — Гимза (азур-эозином) в течение трехчетырех минут. Уровень апоптозов в гранулезных клетках определяли с помощью флуорохромов: пропидия йодида (РІ) с фильтрами возбуждения 565/30 нм и эмиссии 620/60 нм и акридинового оранжевого (АО) с фильтрами возбуждения 470/40 нм и эмиссии 525/50 нм (Sigma-Aldrich, США). Для этого клетки дважды отмывали в PBS (Phosphate Buffered Saline) (37°С), после чего производили фиксацию клеток 70-градусным спиртом в течение 20-30 мин. После этого клетки дважды отмывали в PBS (37°C) и окрашивали раствором AO/PI (10 мкг/мл в PBS) в течение 10 мин. Подсчет клеток производился на микроскопе Nikon eclipse Ni (Nikon, Япония) при X900

> увеличении под иммерсией.

Рис 1. Яичник половозрелой несушки (возраст 183 дня): А — порода смокинговая, Б — английская белая. Фото автора

Fig. 1. Ovary of a mature laying quail (age 183 days): A - tuxedo breed, B - English white. Photo of the author


Результаты и обсуждение / Results and discussion

Цитогенетический анализ клеток гранулезы перепелок показан на рисунке 2.

В ходе цитологических исследований по методу Тарковского [7] (пикноз) были выявлены две породы, показывающие в среднем значении наиболее высокий процент клеток с дегенерированным хроматином по сравнению с остальными породами, — смокинговая и английская черная (40% и 51% против 13%, 17,12% и 14%, p < 0,01). Атрезия овариальных фолликулов у кур, как и у млекопитающих, реализуется путем апоптоза, который представляет собой физиологическую форму смерти клетки [8]. Гранулеза — интрафолликулярная

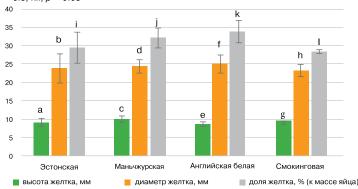

Рис. 2. Оценка показателей дегенерации хроматина овариальных фолликулов перепелов (Тарковский/PI): a:e; a:f; b:e; b:f; c:e; c:f; d:e; d:f; o:p; p:q; p:r — $\rho < 0.01$; m:p; m:q; m:r; n:p; n:q; n:r — $\rho < 0.05$.

Fig. 2. Evaluation of indicators chromatin degeneration in quail ovarian follicles (Tarkovsky/PI): a:e; a:f; b:e; b:f; c:e; c:f; d:e; d:f; o:p; p:q; p:r — p < 0.01; m:p; m:q; m:r; n:p; n:q; n:r — p < 0.05.

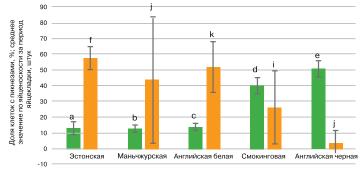

Рис. 3. Показатели высоты, диаметра желтка и доли желтка к массе яйца: c:e; k:l, ρ < 0,05

Fig. 3. Indicators of height, yolk diameter and proportion of yolk to egg mass: c:e; k:l, p < 0.05

Рис. 4. Корреляция между долей пикнозов и яйценоскостью, r = -0,929, ρ < 0,05

Fig. 4. Correlation between the egg production and proportion of pycnosis, r = -0.929, p < 0.05

популяция клеток, продуцирующих комплекс биологически активных веществ, в том числе и стероидных гормонов. Атрезия — нормальный физиологический процесс, регулирующий число фолликулов, предназначенных для овуляции. Интенсивность атретических процессов контролирует количество преовуляторных фолликулов у кур, влияя в конечном итоге на интенсивность и качество яйцекладки [9, 10]. Результаты исследования деструкции хроматина с помощью PI/AO показали высокий средний процент апоптотических клеток почти среди всех пород, кроме английской белой (36%, 36%, 42%, 52% и 43% против 22%, p < 0.05). Однако наибольшая доля мертвых клеток всё же выявлена среди несушек пород смокинговая и английская черная (52% и 43% соответственно).

Данные яичной продуктивности исследованных пород представлены на рисунке 3.

Анализ исследований показал, что среднее значение доли желтка английской белой незначительно превышает по доле желтка остальные породы и достоверно превосходит показатели смокинговой породы (p < 0.05), тогда как высота и диаметр желтка сравниваемых пород находятся примерно на одинаковом уровне. При этом стоит отметить, что по показателям цитогенетического анализа именно несушки английской белой превосходят сородичей других пород в соотношении клеток «живые — мертвые».

Показатели яйценоскости являются не менее важной составляющей пород перепелов. Как показали данные, имеется прямая связь между долей клеток в состоянии пикноза и уровнем яйценоскости за четыре месяца (рис. 4).

В результате анализа выявлена обратная корреляционная связь между долей клеток, содержащих хроматин в состоянии пикноза, и средним значением яйценоскости за весь период яйцекладки.

Крайне немногочисленные и давние исследования, показывающие данные о росте и развитии яичников птиц, а также о формировании доминантного фолликула, не дают в полной мере оценить статус их фертильности. Однако единичные работы указывают на активный митоз клеток гранулезы у доминантных фолликулов в период интенсивной яйцекладки, тогда как в процессе атрезии антральных фолликулов (не достигших стадии доминантного фолликула) происходят подавление митотического процесса и рост числа клеток в состоянии апоптоза. При этом было выдвинуто предположение, что именно гибель клеток гранулезы в результате апоптоза является одним из механизмов регрессии тканей фолликулов и индуцирования его к атрезии [11, 12].

Выводы / Conclusion

В результате мониторинга показателей деструктивных процессов в овариальных фолликулах исследованных перепелок выявлены межпородные различия по уровню пикнозов и апоптозов в клетках гранулезы. Как показали результаты исследований, в одном возрасте и в одинаковых условиях содержания у разных пород несушек перепелов выявлены различные показатели деструкции хроматина в гранулез-

ных клетках стандартизированных по морфологии фолликулов. У перепелок пород смокинговая и английская черная отмечен крайне высокий процент клеток гранулезы в состоянии пикноза и апоптоза, что указывает на активные атретические процессы в фолликулах. Обнаруженные факты свидетельствуют о низких показателях яйценоскости и выбраковки в более раннем периоде представителей вышеуказанных групп в сравнении с другими породами. При этом английская белая

порода в возрасте 183 дней имеет один из лучших показателей яйценоскости и доли желтка по отношению к массе яйца, что предполагает возможность более продолжительного периода их использования в качестве несушек. Результаты исследования могут быть использованы для дальнейшего выяснения молекулярно-биологических механизмов фолликулярной селекции и качества формирующейся яйцеклетки.

Все авторы несут ответственность за свою работу и представленные данные.

Все авторы внесли равный вклад в эту научную работу. Авторы в равной степени участвовали в написании рукописи и несут равную ответственность за плагиат.

Авторы заявляют об отсутствии конфликта интересов.

All authors bear responsibility for the work and presented data.

All authors have made an equal contribution to this scientific work. The authors were equally involved in writing the manuscript and bear the equal responsibility for plagiarism.

The authors declare no conflict of interest.

ФИНАНСИРОВАНИЕ:

Работа выполнена при финансовой поддержке РНФ, грант № 21-16-00086.

FUNDING:

The work was supported by the Russian Science Foundation No. 21-16-00086

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Дулина А.С. Перепеловодство как перспективная отрасль птицеводства в Астраханской области. Социально-экономические и экологические аспекты развития Прикаспийского региона: Материалы Международной научно-практической конференции, Элиста, 28–30 мая 2019 года. Элиста: Калмыцкий государственный университет им. Б.Б. Городовикова. 2019; 138–141. eLIBRARY ID: 41153726
- 2. Зыков С.А. Современные тенденции развития птицеводства. Эффективное животноводство. 2019; 4(152): 51–54. eLIBRARY ID: 39323601
- 3. Герцен М.А, Коршева И.А. Эффективность выращивания перепелов на мясо. Достижения науки и образования. 2018; 8(30): 48–49.
- 4. Рехлецкая Е.К., Дымков А.Б. Морфологический состав яиц перепелов пород японская, фараон и техасская белая. *Известия Горского государственного аграрного университета*. 2019; 56 (2): 66–71. eLIBRARY ID: 38470237
- 5. Wu Y. et al. EGFR promotes the proliferation of quail follicular granulosa cells through the MAPK/extracellular signal-regulated kinase (ERK) signaling pathway. *Cell Cycle*. 2019; 18(20): 2742–2756. DOI: 10.1080/15384101.2019.1656952
- 6. Герман Н.Ю., Ветох А.Н., Волкова Н.А. Морфометрические показатели яиц перепелов разных направлений продуктивности. Повышение конкурентоспособности животноводства и задачи кадрового обеспечения: Материалы XXVI Международной научно-практической конференции. 2020; 441–445. eLIBRARY ID: 44001269
- 7. Tarkowski A. An air-drying method for chromosomal preparation from mouse eggs. *Cytogenetic and Genome Research*. 1966; 1: 394–400. DOI:10.1159/000129914
- 8. Johnson A.L. Granulosa cell apoptosis: conservation of cell signaling in an avian ovarian model system. *Biol. Signals Recept.* 2000; 9(2): 96–101. DOI: 10.1159/000014628
- 9. Hocking P.M., Gilbert A.B., Walker M., Waddington D. Ovarian follicular structure of White Leghorns fed ad libitum and dwarf and normal broiler breeders fed ad libitum or restricted until point of lay. *British poultry science*. 1987; 28(3): 493–506. DOI: 10.1080/00071668708416983
- 10. Константинова И.С., Булатова Э.Н., Усенко В.И. Основы цитологии, общей гистологии и эмбриологии животных: учебное пособие. СПб: «Лань». 2020; 240. eLIBRARY ID: 50018783
- 11. Kitamura A., Yoshimura Y., Okamoto T. Changes in the populations of mitotic and apoptotic cells in white follicles during atresia in hens. *Poultry science*. 2022; 81(3): 408–413. DOI: 10.1093/ps/81.3.408
- 12. Yoshimura Y., Okamoto T., Tamura T. Ultrastructural changes of oocyte and follicular wall during oocyte maturation in the Japanese quail (*Coturnix coturnix japonica*). *Journal of Reproduction and Fertility*. 1993; 97(1): 189–196. DOI: https://doi.org/10.1530/jrf.0.0970189

REFERENCES

- 1. Dulina A.S. The quailing as a perspective poultry industry in the Astrakhan region. Socio-economic and environmental aspects of the development of the Caspian region: Proceedings of the International Scientific and Practical Conference, Elista, May 28–30, 2019. Elista: Kalmyk State University named after B.B. Gorodovikov. 2019; 138–141. eLIBRARYID: 41153726 (In Russian).
- 2. Zykov S.A. Modern trends in poultry development. *Efficient animal husbandry (Effektivnoye zhivotnovodstvo)*. 2019; 4(152): 51–54. eLIBRARYID: 39323601 (In Russian).
- 3. Herzen M.A., Korsheva I.A. Efficiency of growing quails for meat. *Achievements of science and education (Dostizheniya nauki i obrazovaniya).* 2018; 8(30): 48–49. (In Russian).
- Rekhletskaya E.K., Dymkov A.B. Eggs morphological composition of japanese, pharaoh and texas white qualis. *Izvestia Gorsky State Agrarian University*. 2019; 56(2): 66–71. eLIBRARY ID: 38470237 (In Russian).
- Wu Y. et al. EGFR promotes the proliferation of quail follicular granulosa cells through the MAPK/extracellular signal-regulated kinase (ERK) signaling pathway. Cell Cycle. 2019; 18(20): 2742–2756. DOI: 10.1080/15384101.2019.1656952
- 6. German N.Yu., Vetokh A.N., Volkova N.A. Morphometric indicators of eggs from quails with different productivity types. *Improving the competitiveness of animal husbandry and the tasks of staffing: materials of the XXVI International Scientific and Practical Conference*. 2020; 441–445. eLIBRARY ID: 44001269 (In Russian).
- 7. Tarkowski A. An air-drying method for chromosomal preparation from mouse eggs. *Cytogenetic and Genome Research*. 1966; 1: 394–400. DOI:10.1159/000129914
- Johnson A.L. Granulosa cell apoptosis: conservation of cell signaling in an avian ovarian model system. *Biol. Signals Recept.* 2000; 9(2): 96–101. DOI: 10.1159/000014628
- 9. Hocking P.M., Gilbert A.B., Walker M., Waddington D. Ovarian follicular structure of White Leghorns fed ad libitum and dwarf and normal broiler breeders fed ad libitum or restricted until point of lay. *British poultry science*. 1987; 28(3): 493–506. DOI: 10.1080/00071668708416983
- 10. Konstantinova I.S., Bulatova E.N., Usenko V.I. Fundamentals of cytology, general histology and embryology of animals: study guide. St. Petersburg: *Publishing house «Lan»*. 2020; 240. eLIBRARY ID: 50018783 (In Russian).
- 11. Kitamura A., Yoshimura Y., Okamoto T. Changes in the populations of mitotic and apoptotic cells in white follicles during atresia in hens. *Poultry science*. 2022; 81(3): 408–413. DOI: 10.1093/ps/81.3.408
- 12. Yoshimura Y., Okamoto T., Tamura T. Ultrastructural changes of oocyte and follicular wall during oocyte maturation in the Japanese quail (*Coturnix coturnix japonica*). *Journal of Reproduction and Fertility*. 1993; 97(1): 189–196. DOI: https://doi.org/10.1530/jrf.0.0970189

ОБ АВТОРАХ:

Анна Олеговна Притужалова,

младший научный сотрудник,

Всероссийский научно-исследовательский институт генетики и разведения сельскохозяйственных животных филиал Федерального государственного бюджетного научного учреждения «Федеральный исследовательский центр животноводства — ВИЖ им. академика Л.К. Эрнста», Московское ш., д. 55A, Санкт-Петербург, 196625, Российская Федерация aklevakina14@mail.ru https://orcid.org/0000-0002-2865-9582

Наталья Александровна Волкова,

доктор биологических наук, главный научный сотрудник, Федеральный исследовательский центр животноводства — ВИЖ им. академика Л.К. Эрнста, пос. Дубровицы, 60, Московская обл., 142132,

Российская Федерация

natavolkova@inbox.ru

https://orcid.org/0000-0001-7191-3550

Татьяна Ивановна Кузьмина,

доктор биологических наук, профессор, Всероссийский научно-исследовательский институт генетики и разведения сельскохозяйственных животных — филиал Федерального государственного бюджетного научного учреждения «Федеральный исследовательский центр животноводства — ВИЖ им. академика Л.К. Эрнста», Московское ш., 55А, Санкт-Петербург, 196625, Российская Федерация

prof.kouzmina@mail.ru https://orcid.org/0000-0002-4218-6080

Анастасия Николаевна Ветох,

научный сотрудник,

Федеральный исследовательский центр животноводства— ВИЖ им. академика Л.К. Эрнста,

пос. Дубровицы, 60, Московская обл., 142132,

Российская Федерация anastezuya@mail.ru

https://orcid.org/0000-0002-2865-5960

Алан Юрьевич Джагаев,

аспирант, младший научный сотрудник, Федеральный исследовательский центр животноводства— ВИЖ им. академика Л.К. Эрнста, пос. Дубровицы, 60, 142132, Российская Федерация

alan dz@inbox.ru

https://orcid.org/0000-0001-7818-0142

ABOUT THE AUTHORS:

Anna Olegovna Prituzhalova,

Junior Researcher,

All-Russian Research Institute of Genetics and Breeding of Farm - branch of the Federal State Budgetary Scientific Institution «L.K. Ernst Federal Research Center for Animal Husbandry», 55A Moskovskoe shosse, Saint-Petersburg, 196625, Russian Federation

aklevakina14@mail.ru

https://orcid.org/0000-0002-2865-9582

Natalia Alexandrovna Volkova,

Doctor of Biological Sciences, Chief Researcher, L.K. Ernst Federal Research Center for Animal Husbandry, 60 Dubrovitsy, Moscow region, 142132, Russian Federation natavolkova@inbox.ru

https://orcid.org/0000-0001-7191-3550

Tatyana Ivanovna Kuzmina,

Doctor of Biological Sciences, Professor, All-Russian Research Institute of Genetics and Breeding of Farm Animals — branch of the Federal State Budgetary Scientific Institution «L.K. Ernst Federal Research Center for Animal Husbandry», 55A Moskovskoe shosse, Saint-Petersburg, 196625, Russian Federation

prof.kouzmina@mail.ru

https://orcid.org/0000-0002-4218-6080

Anastasia Nikolaevna Vetokh,

Research associate,

L.K. Ernst Federal Research Center for Animal Husbandry, 60 Dubrovitsy, Moscow region, 142132, Russian Federation anastezuya@mail.ru

https://orcid.org/0000-0002-2865-5960

Alan Yurievich Dzhagaev,

Postgraduate student, junior researcher, L.K. Ernst Federal Research Center for Animal Husbandry, 60 Dubrovitsy, Moscow region, 142132, Russian Federation alan dz@inbox.ru https://orcid.org/0000-0001-7818-0142

12-13 апреля 2023 Отель «Холидей Инн Лесная»

Москва

Темы конгресса:

Конгресс & экспо

- Состояние отрасли: развитие технологий и рынка биотоплив
- Производство пищевого и технического спирта: тонкости технологии, реконструкция заводов, новые виды сырья
- Топливный биоэтанол, бутанол и другие транспортные биотоплива
- Пиролиз и газификация: бионефть и сингаз.
- Биодизель, биокеросин и растительные масла как топливо
- Твердые биотоплива: пеллеты, брикеты, щепа
- Другие вопросы биотопливной отрасли

