ФИТОЦЕНОТИЧЕСКАЯ ПАРАДИГМА В СЕЛЕКЦИИ ЛОМКОКОЛОСНИКА СИТНИКОВОГО НА ЮГЕ СРЕДНЕЙ СИБИРИ

PHYTOCENOTIC PARADIGM IN THE BREEDING OF THE RUSSIAN WILDRYE (PSATHYROSTACHYS JUNCEA) IN THE SOUTH OF MIDDLE SIBERIA

Кадоркина В.Ф., Шевцова М.С.

ФГБНУ «Научно-исследовательский институт аграрных проблем Хакасии»

655132, Россия, Республика Хакасия, Усть-Абаканский р-н, с. Зеленое, Садовая ул., д. 5 E-mail: qeenmaria@yandex.ru

На первых этапах селекции ломкоколосника ситникового выявлены и отобраны лучшие генотипы с дикорастущего фитоценоза, отвечающие задачам селекции по комплексу признаков: высоте растений, числу генеративных побегов, количеству семян на одно растение, мощности куста и другим признакам. Критериями отбора послужили статистические показатели: дисперсия признаков и характер распределения его частот. При отборе биотипов за 2015-2018 годы в питомнике исходного материала, заложенного в сухостепном агроэкологическом районе. Значительная изменчивость варьирования отмечена у такого признака, как масса семян на одно растение: коэффициент вариации от 48,82 до 94,65% у таких номеров, как К5; К9 и К12. Средняя высота растений за три года в питомнике исходного материала после перезимовки составила 14,8-18,6-15,1 см. Среди отобранных номеров преобладают растения с высоким травостоем: K2 - 20,2 см; K6 - 22,0 см; K9 - 20,6 см; К20 — 24,7 см. В фазу колошения наибольшая высота растений у биотипов К2 — 123,4 см; К11 — 124,7 см; К12 — 122,4 см. Отмеченные различия по динамике роста можно объяснить наследственной реакцией растений на колебания факторов внешней среды. Растения со стабильным высоким приростом, попавшие в селекционную выборку, могут рассматриваться как индивиды с хорошо развитым гомеостазом, обеспечивающим относительную автономность от условий внешней среды. По урожайности зеленой массы отобраны образцы: K1; K2; K3; K5; K9, K11, K12 - от 470 г до 560 г: сухого вещества эти же образцы — от 100 г до 120 г. При использовании пастбищного режима (имитация скашивания) допустимо 3-4-кратное скашивания травостоя. По комплексу хозяйственно ценных признаков отобраны сортообразцы: К1; К2; К3; К5; К9; К11; К12.

Ключевые слова: ломкоколосник ситниковый, массовый отбор, селекция, исходный материал, агрофитоценоз, дикорастущие популяции, селекционные образцы.

Для цитирования: Кадоркина В.Ф., Шевцова М.С. ФИТОЦЕНОТИЧЕСКАЯ ПАРАДИГМА В СЕЛЕКЦИИ ЛОМКОКОЛОСНИКА СИТНИКОВОГО НА ЮГЕ СРЕДНЕЙ СИБИРИ. Аграрная наука. 2019; (4): 58–61.

https://doi.org/10.32634/0869-8155-2019-324-4-58-61

Kadorkina V.F., Shevtsova M.S.

FSBSI "Research Institute of Agrarian Problems of Khakassia" 655132, Russia, Republic of Khakassia, Ust-Abakansky District, p. Green, Sadovaya st., 5
E-mail: geenmaria@yandex.ru

At the first stages of selection of the cholece collar, the best genotypes from the wild phytocenosis were identified and selected, which meet the objectives of breeding according to a complex of traits: plant height, number of generative shoots, number of seeds per plant, bush capacity and other traits. The selection criteria were statistical indicators: the dispersion of features and the nature of the distribution of its frequencies. When selecting biotypes for 2015-2018 in the nursery of the source material, laid down in the dry steppe agro-ecological area. Significant variation variability was noted in such a sign as seed weight per plant: coefficient of variation - 48.82 to 94.65% for numbers such as K5; K9 and K12. The average height of plants for three years in the nursery of the source material after overwintering was 14.8-18.6-15.1 cm. Among the selected numbers, plants with high grass stand prevail: K2 - 20.2 cm; K6 - 22.0 cm; K9 - 20.6 cm; K20 - 24.7 cm. In the earing phase, the highest plant height in biotypes K2 is 123.4 cm; K11 - 124.7 cm; K12 - 122.4 cm. The noted differences in the growth dynamics can be explained by the hereditary reaction of plants to fluctuations of environmental factors. Plants with a stable high gain, trapped in a selection sample, can be considered as individuals with well-developed homeostasis, providing relative autonomy from environmental conditions. According to the yield of green mass, samples were selected: K1; K2; K3; K5; K9, K11, K12 - from 470 g to 560 g; dry matter the same samples - from 100 g to 120 g. When using the pasture mode (imitation of mowing), 3-4 fold mowing of grass is permissible. The following samples were selected for the complex of economically valuable attributes: K1; K2; K3; K5; K9; K11; K12.

Key words: Russian wildrye, Psathyrostachys juncea, mass selection, selection, source material, agrophytocenosis, wild-growing populations, selection samples.

For citation: Kadorkina V.F., Shevtsova M.S. PHYTOCENOTIC PARADIGM IN THE BREEDING OF THE RUSSIAN WILDRYE (Psathyrostachys juncea) IN THE SOUTH OF MIDDLE SIBERIA. Agrarian science. 2019; (4): 58–61. (In Russ.)

https://doi.org/10.32634/0869-8155-2019-324-4-58-61

Введение

Современная селекция рассматривает выбор исходного материала как отправную точку селекционной программы, во многом определяющей ее успех. Дикорастущие формы кормовых растений служат основным источником аллелей экологической пластичности [5].

Важнейшим звеном адаптивного подхода в селекционной работе является разработка принципов и методов фитоценотической селекции, то есть создание конкурентных сортов, способных адаптироваться к местным условиям. [10]. Цель работы — получение исходных форм ломкоколосника ситникового, с комплексом хозяйственно ценных признаков, приспособленных к почвенно-климатическим условиям региона.

Методика

Исходным материалом ломкоколосника ситникового (Psathyrostachys juncea (Fisch)) послужил природный фитоценоз с преобладанием разнотравно-злакового компонента среди степной растительности в сообществе с такими ксерофитами, как типчак, ковыль, полыни,

волоснец пушистоколосый и гигантский, произрастающий в сухостепном агроэкологическом районе Хакасии [3]. Сухая степь Хакасии, где проводили отбор, отличается наибольшей в пределах республики континентальностью климата и повышенной теплообеспеченностью. Сумма температур больше +10 °C повышенная (1900–2000 °C), период с такими температурами составляет 110–120 суток. Среднегодовое количество осадков низкое (275 мм). Резкий дефицит влаги, особенно в период кущения полевых культур, сильно снижает их продуктивность. Средняя температура воздуха самого холодного месяца (января) составляет –18,1 °C, абсолютный его минимум — –42 °C. Зимы, как правило, малоснежные, снеговой покров не превышает 10–15 см [8].

Первоначальный отбор перспективных образцов осуществляли в 2011 и 2014 году. Отобранные в природных условиях дикорастущие формы изучали в коллекционном питомнике, отбор биотипов проводили по комплексу признаков: высоте растений, числу генеративных побегов, количеству семян на одно растение, мощности куста и др., по методике селекции кормовых трав Сибири [6; 7; 4]. Математическую обработку осуществляли по Доспехову Б.А. (1985), с использованием программы Excel. Объект исследований — 30 биотипов ломкоколосника ситникового.

Основным методом селекции стал семейственно-групповой отбор, который можно считать разновидностью индивидуального отбора у перекрестноопыляющих видов [1].

Селекционная схема работы с этой культурой начата в 2015 году в соответствии с методическими указаниями по селекции кормовых культур и методике Государственной Комиссии по сортоиспытанию сельскохозяйственных культур [1, 9, 10]. Коллекционный питомник исходного материала заложен на территории ботанического сада ФГБНУ «НИИ аграрных проблем Хакасии» на каштановых почвах. Посев биотипов проводили в этом питомнике на делянках размером 100×100 см, на одном квадратном метре находилось по 4 растения. Выделившиеся образцы в 2016-2017 годах, согласно схемы селекционного процесса, в дальнейшем переведены в селекционный питомник. Наряду с выделенными образцами высеяны сорта селекции Якутского НИИСХ Боотур и Манчаары. Для характеристики роста и развития, устойчивости к болезням и продуктивности изучаемых номеров в питомниках вели фенологические наблюдения, глазомерные оценки и описания. Их сопровождали непосредственным подсчетом, измерением, взвешиванием. При сравнении образцов в различные годы использовали 5-балльную систему (5 — очень высокая; 4 — высокая; 3 — средняя; 2 — низкая; 1 — очень низкая) по методике селекции кормовых трав в Сибири [1; 9].

Результаты

На первых этапах селекции ломкоколосника ситникового выявлены и отобраны лучшие генотипы с естественного фитоценоза. В дальнейшем при развертывании селекционного процесса по созданию сорта с определенными новыми хозяйственными и биологическими свойствами возможен более широкий и разнообразный по происхождению и экологическим условиям произрастания материал. Исходным материалом для селекции ломкоколосника ситникового послужило местное растительное сообщество площадью около 5 га, которое находилось в сухостепном агроэкологическом районе. Отбирали биотипы или отдельные растения из одной популяции, отвечающей задачам селек-

ции. Критериями отбора стали разные статистические показатели — дисперсия признаков и характер распределения его частот.

Установлено, что у популяции с дикорастущего фитоценоза такие признаки растений, как число генеративных побегов, масса семян на одно растение, мощность травостоя, форма куста в фазе колошения, устойчивость к полеганию растений варьировали в средней степени, что означает выравненность исходного материала. Значительный коэффициент варьирования отмечен у признаков: высота растений и длина колоса — 23,2 и 26,6%.

Коллекционный питомник исходного материала высеян 15 июля 2015 года полученными семенами с естественного фитоценоза. Появление всходов наблюдали в первой декаде августа, с высотой растений 5–7 см, густота стояния перед уходом в зиму — от 4 до 5 баллов.

В 2016 году количество перезимовавших и погибших биотипов определено по методике густоты стояния травостоя, оно составило от 3 до 5 баллов. Формирование колоса не отмечено у 9 образцов, таких как К8; К8а; К17; К21; К22; К23; К24; К25; К26. Более половины всех растений погибли у трех образцов: К10, К20, К30; а в 2018 году у образцов К8а; К17; К25; К26 гибель растений составила 40–50%.

Незначительная вариабельность признаков в 2016 году наблюдалась у образцов по устойчивости к полеганию и составила 7,22%. В средней степени изменялась мощность травостоя — 15,18%. Значительная вариабельность отмечена по остальным признакам изучаемых биотипов — от 20,04 до 93,22%. В 2017 году значительный коэффициент вариации был по высоте растений, массе семян на одно растение, длине колоса — от 20,13 до 48,82%, остальные образцы со средней вариабельностью признаков — от 13,29 до 15,64%.

В 2018 году в коллекционном питомнике исходного материала также проводили фенологические наблюдения, устанавливали число укосов, интенсивность цветения и плодоношения, повреждение вредителями и болезнями, содержание сухого и сырого вещества, облиственность, имитацию пастбищного использования образцов, осуществляли анализ структуры урожая, оценку семенной продуктивности. Вариабельность признаков в коллекционном питомнике исходного материала четвертого года жизни ломкоколосника ситникового показывает, что коэффициент вариации признака «количество семян на одно растение» незначительный и составляет 7,92%. Средней изменчивостью обладают биотипы с такими признаками, как высота растений, длина колоса, число продуктивных стеблей, масса семян с 1 колоса, так как коэффициент вариации у этих признаков не превышает 20%. Значительное варьирование наблюдается у образцов по массе семян у всех продуктивных стеблей, мощности травостоя, форме куста и устойчивости к полеганию, так как коэффициент вариации их составляет от 26,85% до 94,65% (табл. 1).

Высота растений — важный хозяйственный признак, который служит косвенным показателем кормовой продуктивности, так как установлены прямые коррелятивные связи между высотой травостоя и урожайностью [9].

Средняя высота растений за три года в питомнике исходного материала после перезимовки составила $14.8-18.6-15.1\,\mathrm{cm}$. Среди отобранных номеров преобладают растения с высоким травостоем: $K2-20.2\,\mathrm{cm}$; $K6-22\,\mathrm{cm}$; $K9-20.6\,\mathrm{cm}$; $K20-24.7\,\mathrm{cm}$. В фазу колошения наибольшая высота растений составила у

Таблица 1.

Вариабельность признаков в коллекционном питомнике исходного материала ломкоколосника ситникового 2015 года посева

Table 1. Characteristics variability in the collection nursery of the starting material of the Psathyrostachys juncea, 2015

Признак	Пределы варьирования	Популяция			Коэффициент
		\overline{x}	S₹	s	вариации, V ,%
Высота растений, см	61,5-124,7	104,38	3,19	16,89	16,18
Число генеративных побегов, шт	3–98	32,32	1,21	6,02	18,64
Масса семян с 1 колоса, г	0,32-0,56	0,49	0,01	0,05	11,84
Масса семян на одно растение, г	0,55-44,47	11,77	2,22	11,14	94,65
Масса семян всех продуктив- ных стеблей, г	36,0-165,0	116,32	1,84	9,21	7,92
Длина колоса, см	8,9-14,3	11,85	0,28	1,40	11,84
Мощность травостоя, балл	1–5	3,36	0,19	1,20	35,81
Форма куста в фазе колошения, балл	2–3	3,61	0,15	1,14	28,59
Устойчивость к полеганию	3–5	3,77	0,16	1,01	26,85

Примечание: \bar{x} – среднее арифметическое значение; $S\bar{x}$ – ошибка средней; S – стандартное отклонение

Рис. 1. Динамика роста отбора по высоте растений ломкоколосника ситникового. По вертикали – высота растений (см), по горизонтали – годы исследований и фенологические фазы: I – после зимовки; II – трубкование; III – колошения

Fig. 1. The dynamics of the growth of selection for plant height plants. Note: Vertical – plant height (cm), horizontal – year of research and phenological phases: I – after wintering; II – booting; III – earing

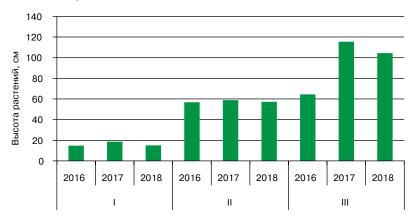


Таблица 2. Вариабельность признаков в коллекционном питомнике исходного материала ломкоколосника ситникового 2015 года посева на отавность

Table 2. Characteristics variability in the collection nursery of the starting material of the grass planting, 2015

Признак (Indication)	Пределы варьирования (Variation limits)	Популяция (Population)			Коэффициент
		\overline{x}	S⊽	s	вариации, V % (Variation factor, the V %)
Высота растений I укоса	18,7–33,9	27,69	0,88	4,64	16,76
Высота растений II укоса	21,8-56,6	40,53	1,63	8,49	20,96
Высота растений III укоса	9,4-43,8	25,31	2,19	10,76	42,53

Примечание: \bar{x} – среднее арифметическое значение; $S\bar{x}$ – ошибка средней; S – стандартное отклонение

K2 - 123,4; K11 - 124,7; K12 - 122,4 и наименьшая у K8a - 61,5 см; K17 - 69,3 см; K26 - 82,6 см (рис.1).

Величина селекционного дифференциала выделившихся биотипов по высоте растений составила 1,3%. Динамика роста отбора по высоте растений показала различие между отдельными растениями в темпах роста. Выявлены растения с высоким темпом роста на протяжении всего периода вегетации — К2; К9; К12; К20. Отмеченные различия по динамике роста можно объяснить наследственной реакцией растений на колебания факторов внешней среды. Растения со стабильным высоким приростом, попавшие в селекционную выборку, могут рассматриваться как индивиды с хорошо развитым гомеостазом, обеспечивающим относительную автономность от условий внешней среды.

По комплексу продуктивных качеств в 2017 году у образцов К5, К9 и К12 наибольшие показатели по массе семян — от 33,85 г до 81,25 г и числу продуктивных стеблей от 211 шт. до 300 шт. В 2018 году из изучаемых биотипов выделились К1 и К12: по длине колоса (от 13,3 см до 14,3 см), числу продуктивных стеблей — от 60 шт. до 81 шт., массе семян 1 колоса — от 0,53 г до 0,56 г, массе семян продуктивных стеблей — 21,52 г до 44,47 г, количеству семян с одного растения - от 132 шт. до 164 шт; по этим же признакам, кроме длины колоса - номера К5 и К9.

Урожайность кормовой массы является основным показателем ценности образцов. Учет зеленой массы проводили в фазу полного колошения 4 июня. Наибольший вес отмечен у K1-470 г, K2-480 г, K3-560 г, K9-510 г, K11-550 г, K18-520 г. По массе сухого вещества и по облиственности выделись эти же образцы.

Поедаемость растений животными зависит от фазы вегетации, химического состава и морфологических особенностей растений, от погодных условий и от вида животного. Она изменялась в течении вегетационного периода. В фазу начала пастбищной спелости образцов, при высоте растений 20–25 см, проведены три имитации стравливания.

Среднее варьирование признаков отмечено по высоте растений первого и второго укосов. Значительное варьирование признака на-

блюдалось при третьем укосе у образцов К1, К3, К9, К11 (табл. 2).

В период вегетации растений у ломкоколосника ситникового отмечены такие болезни, как пыльная головня

и бурая листовая ржавчина. Высокое проявление бурой листовой ржавчиной наблюдалось у образцов К1; К21; К23; К24; К25; К26. Более интенсивное развитие этого заболевания отмечено на листьях и стеблях у К21; К25; К26. Индекс развития болезни в 2018 году достигал 50%, что выше порога вредоносности (20%) [11]. В первую очередь это связано с благоприятными погодными условиями, складывающимися для развития патогена и источника распространения, которым являлся барбарис, произрастающий недалеко от питомника исходного материала, что и обусловило высокое проявление болезни.

Также выявлено поражение колоса ломкоколосника ситникового пыльной головней, проявившейся в фазу молочной спелости (17 июля) у образцов К8; К11 и К22. Вместо формирующихся колосьев образовались вздутия, которые вначале покрыты беловато-розовой, позже серовато-грязноватой тонкой, легко разрывающейся пленкой, состоящей из грибницы патогена.

Выводы

Анализ привлеченных статистических показателей, характеризующий отбор, показал, что отселектированные в исходной популяции растения могут рассматриваться как основа для создания популяции с новыми генетическими свойствами. Среди отобранных преобладают растения с большим числом генеративных побегов, хорошим травостоем, урожайностью зеленой массы и сухого вещества, массой семян с одного растения, устойчивостью к болезням. При использовании пастбищного режима травостоя (три имитации скашивания) выделились образцы: К1; К2; К3; К5; К9; К11; К12 с тем комплексом признаков, от которых зависит общая продуктивность.

ЛИТЕРАТУРА

- 1. Гончаров П.Л. Методика селекции кормовых трав в Сибири / РАСХН. Сиб. отд-ние. СибНИИРС. НГАУ. Новосибирск, 2003. 396 с.
- 2. Доспехов Б.А. Методика полевого опыта (с основами статистической обработки результатов исследований). М.: Агропромиздат, 1985. 351 с.
- 3. Кадоркина В.Ф. Подбор исходного материала для селекции ломкоколосника ситникового на юге Средней Сибири // Кормопроизводство. 2018. № 9. С. 38–41. doi. org/10.25685/KRM.2018.2018.17311
- 4. Кормопроизводство: проблемы и пути решения. М.: ВНИИ кормов, 2007. С. 284–289.
- 5. Косолапов В.М., Козлов Н.Н., Коровина В.Л., Клименко И.А. Дикорастущие генетические ресурсы в селекции кормовых трав // Кормопроизводство. № 1. 2018. С. 29–32. doi.org/10.25685/KRM.2018.2018.9950
- 6. Новоселова А.С., Константинова А.М. Селекция и семеноводство многолетних трав. М., Колос, 1978. 303 с.
- 7. Свиренко Л.П. Возделывание волоснеца ситникового на корм и семена: рекомендации. Абакан, 1993. 14 с.
- 8. Шатский И.М., Иванов И.С., Переправо Н.И. [и др.] Селекция и семеноводство многолетних трав в Центрально-Черноземном регионе России. Научное издание. Воронеж: ОАО «Воронежская областная типография», 2016. 236 с.
- 9. Шамсутдинов З.И., Козлов Н.М. Значение генетической коллекции в интенсификации селекции кормовых культур // Селекция и семеноводство. 1996. № 3-4. С. 9-12.
- 10. Чумаевская М.А., Матвеева Е.В. Бактериальные болезни злаковых культур / Всесоюзн. Акад. с.-х. наук им. В. И. Ленина. М.: Агропромиздат, 1985. 287 с.

ОБ АВТОРАХ:

Кадоркина В.Ф., руководитель группы кормопроизводства, селекции и семеноводства

Шевцова М.С., кандидат сельскохозяйственных наук

REFERENCES

- 1. Goncharov P.L. Method of breeding grass in Siberia. Novosibirsk, 2003. 396 p.
- 2. Dospekhov B.A. Methods of field experience (with the basics of statistical processing of research results). M.: Agropromizdat, 1985. 351 p.
- 3. Kadorkina V.F. Selection of parent material for Russian wildrye breeding in the south of Central Siberia // Fodder Production. 2018. N^2 9. P. 38–41. doi.org/10.25685/KRM.2018.2018.17311
- 4. Fodder production: problems and solutions. M.: All-Russia Research Institute of Feed, 2007. P. 284–289.
- 5. Kosolapov V.M., Kozlov N.N., Korovina V.L., Klimenko I.A. Wild genetic resources in forage grass breeding // Fodder Production. N $^{\rm Q}$ 1. 2018. C. 29–32. doi.org/10.25685/KRM.2018.2018.9950
- 6. Novoselova A.S., Konstantinova A.M. Selection and seed farming of perennial grasses. M., 1978. $303\ p.$
- 7. Svirenko L.P. The cultivation of the willower rush on the food and seeds: recommendations. Abakan, 1993. $14\,\mathrm{p}$.
- 8. Shatsky I.M., Ivanov I.S., Perepravo N.I. [et al.] Breeding and seed production of perennial grasses in the Central Chernozem region of Russia. Scientific publication. Voronezh: Voronezh Regional Printing House OJSC, 2016. 236 p.
- 9. Shamsutdinov Z.I., Kozlov N.M. The value of the genetic collection in the intensification of breeding of forage crops / Z.I. Shamsutdinov, N.M. Kozlov // Selection and seed production. 1996. N^{o} 3–4. P. 9–12.
- 10. Chumaevskaya M.A., Matveeva Ye.V. Bacterial diseases of cereals. M.: Agropromizdat, 1985. 287 p.

ABOUT THE AUTHORS:

Kadorkina V.F., Head of the Group of Feed Production, Breeding and Seed Production

Shevtsova M.S., Candidate of Agricultural Sciences