Preview

Аграрная наука

Расширенный поиск

Протеазы в питании моногастричных животных

https://doi.org/10.32634/0869-8155-2021-344-1-30-38

Полный текст:

Аннотация

В организме существует множество протеаз, которые регулируются примерно 2% генома человека. Из них на долю, участвующую в пищеварении, приходится лишь малая часть. Несмотря на это механизмы действия пищеварительных протеаз изучены слабее, чем карбогидраз и липаз. Включение экзогенных протеаз в корма для молодняка животных часто сопровождается улучшением использования белка и других питательных веществ. Экзогенные протеазы разрушают ингибиторы эндогенных протеаз и лектины, содержащиеся в кормах. Интерес представляют щелочные протеазы в связи с их более широкой субстратной специфичностью и сохранением активности на протяжении всего желудочно-кишечного тракта. В эту группу входят кератиназы, которые переваривают белки, недоступные для расщепления протеазами и пептидазами животных. Кератиназы переваривают агглютинины, глицинин и b-конглицинин и соединительнотканные белки, которые устойчивы к действию ферментов ЖКТ и ряда экзогенных протеаз. Описаны предполагаемые причины нестабильных результатов при использовании кормовых протеаз. Указаны их опосредованные эффекты положительного действия, не связанные с протеолизом. В качестве кормовых протеаз целесообразно использовать протеазы, обладающие кератинолитической активностью.

Об авторах

В. С. Крюков
ООО «Кормогран»
Россия

Валерий Сергеевич Крюков, доктор биологических наук, профессор

Москва



С. В. Зиновьев
ВНИИПП — филиал ФНЦ ВНИТИП
Россия

Сергей Владимирович Зиновьев, кандидат с.-х. наук

п. Ржавки Московской обл.



Р. В. Некрасов
ФГБНУ ФИЦ ВИЖ им. Л.К. Эрнста
Россия

Роман Владимирович Некрасов, доктор с.-х. наук, профессор

Подольск-Дубровицы Московской обл.



Список литературы

1. ГОСТ Р 55987-2014 Корма, комбикормовое сырье. Метод определения переваримости муки из гидролизованного пера in vitro (Переиздание).

2. Еремеев, Н.Л., Николаев И.В., Керученко И.Д., Степанова Е.В., Сатрутдинов А.Д., Зиновьев С.В., Исмаилова Д.Ю., Хотченков Н.В., Синицин А.П., Волик В.Г., Королёва О.В. Ферментный гидролиз кератинсодержащего сырья для получения белковых гидролизатов. Прикладная биохимия и микробиология. 2009;45(6):717-724.

3. Слепнева, Е.В., Хамматова В.В. Влияние химических реагентов на кератин шерстяных волокон. Вестник Казанского технологического университета. 2014;17(16):73-75.

4. Aderibigbe A., Cowieson A. J, Sorbara J. O., Pappenberger G. and Adeola O. Growth performance and amino acid digestibility responses of broiler chickens fed diets containing purified soybean trypsin inhibitor and supplemented with a monocomponent protease. Poultry Science. 2020;(99):5007.

5. Adler S. A., Slizyte R., Honkapää K. and Løes A-K. In vitro pepsin digestibility and amino acid composition in soluble and residual fractions of hydrolyzed chicken feathers. Poultry Science. 2018;(97):3343-3357.

6. AOAC (1990) ‘Official methods of analysis.’ 15th edn (Association of Official Analytical Chemists: Arlington, VA)

7. Avdiyuk K.V., Varbanets L.D. Keratinolytic enzymes: producers, physical and chemical proherties, application for bionechnology. Biotechnologia Acta. 2019;12(2):27-45.

8. Bielorai R., Harduf Z., Iosif B., Alumot E. Apparent amino acid absorption from feather meal by chicks. The British Journal of Nutrition. 1983;(49):395-399

9. Bohacz J., Korniłłowicz-Kowalska T., Kitowski I., Ciesielska A. Degradation of chicken feathers by Aphanoascus keratinophilus and Chrysosporium tropicum strains from pellets of predatory birds and its practical aspect. Int. Biodeterioration and Biodegradation. 2020;(151):104968. DOI:10.1016/j.ibiod.2020.104968

10. Brandelli A. Bacterial keratinases: useful enzymes for bioprocessing agroindustrial wastes and beyond. Food Bioproc. Technol. 2008;(1):105–116.

11. Brandelli A., Daroit D.J., Riffel A. Biochemical features of microbial keratinases and their production and applications. Appl. Microbiol. Biotechnol. 2010;(85):1735–1750.

12. Caine W.R., Verstegen M.W.A., Sauer W.C., Tamminga S., Schulze H. Effect of protease treatment of soybean meal on content of total soluble matter and crude protein and level of soybean trypsin inhibitors. Anim. Feed Sci. Technol. 1998;(71):177-183.

13. Carter S.D. Bacterial Keratinase: Assay development and nutritional application. North Carolina State University, Raleigh. Ph.D. Thesis. 1998. 92 р.

14. Castanon J.I.R., Marquardt R.R. Effect of enzyme addition, autoclave treatment and fermenting on the nutritive value of field beans (Vicia faba L.). Animal Feed Sci. Technol. 1989;(26):71–79.

15. Chen J., Wedekind K., Vazquez-Anon M. Trypsin inhibitor and urease activity of soybean meal products from different countries and impact of trypsin inhibitor on ileal amino digestibility in pigs. Journal of the American Oil Chemists› Society. 2020;97(10):11511160.

16. Clarke E., Wiseman J. Effects of variability in trypsin inhibitor content of soya bean meals on true and apparent ileal digestibility of amino acids and pancreas size in broiler chicks. Anim. Feed Sci. Technol. 2005;(121):125-138.

17. Clemente A., Jimenez E., Marin-Manzano M.C. Rubio L.A. Active Bowman-Birk inhibitors survive gastrointestinal digestion at the terminal ileum of pigs fed chickpea-based diets. J. Sci. Food Agric. 2008;(88):513-521.

18. Cowieson A.J., Bhuiyan M.M., Sorbara J.O.B, Pappenberger G., Pedersen M.B., Choct M. Contribution of individual broilers to variation in amino acid digestibility in soybean meal and the efficacy of an exogenous monocomponent protease. Poultry Sci. 2020;(99):1075-1083.

19. Cowieson A.J., Toghyani M., Kheravii S.K., Wu S.-B., Romero L.F., Choct M. A mono-component microbial protease improves performance, net energy, and digestibility of amino acids and starch, and up-regulates jejuna expression of genes responsible for peptide transport in broilers fed corn/wheatbased diets supplemented with xylanase and phytase. Poultry Sci. 2019;(98):1321–1332.

20. Cowieson A.J., Roos F.F. Toward optimal value creation through the application of exogenous mono-component protease in the diets of non-ruminants. Animal Feed Science and Technology. 2016;(221):331–340.

21. Cowieson A.J., Zaefarian F., Knap I., Ravindran V. Interactive effects of dietary protein concentration, a mono-component exogenous protease and ascorbic acid on broiler performance, nutritional status and gut health. Anim. Prod. Sci. 2017;(57):10581068

22. Cowieson A.J., Lu H., Ajuwon K., Knap I., Adeola O. Interactive effects of dietary protein source and exogenous protease on growth performance, immune competence and jejunal health of broiler chickens. Anim. Prod. Sci. 2015;(57):252-261.

23. Cowieson A.J. Roos F.F. Bioefficacy of a mono-component protease in the diets of pigs and poultry: a meta-analysis of effect on ileal amino acid digestibility. Journal of Applied Animal Nutrition. 2014;(2):13-21.

24. Eaksuree W., Prachayakitti A., Upathanpreecha T., Taharnklaew R., Nitisinprasert S., Keawsompong S. In vitro and in vivo evaluation of protein quality of enzymatic treated feather meals. SpringerPlus. 2016;(5):971-977.

25. Fontoura R., Daroit D.J., Correa A.P.F., Meira S.M.M., Mosquera M., Brandelli A. Production of feather hydrolysates with antioxidant, angiotensin-1 converting enzyme- and dipeptidyl peptidase-IVinhibitory activities. New Biotechnol. 2014;(31):506–513.

26. Fraser R.B., Parry D.A. Molecular packing in the feather keratin filament. J. Struct. Biol. 2008;(162):1–13.

27. Fukushima D. Soy proteins. In: Handbook of Food Proteins, Eds: Phillips G and Williams P. print: Woodhead Publishing. 2011. 464 p.

28. Gradišar H., Friedrich J., Krizaj I., Jerala R. Similarities and specificities of fungal keratinolytic proteases: comparison of keratinases of Paecilomyces marquandii and Doratomyces microspores to some known proteases. Appl Environ Microbiol. 2005;(71):3420–3426

29. Grumbt M., Monod M., Yamada T., Hertweck C., Kunert J., Staib P. Keratin degradation by dermatophytes relies on cysteine dioxygenase and a sulfite efflux pump. J. Investig. Dermatol. 2013;(133):1550–1555.

30. Gupta R., Ramnani P. Microbial keratinases and their prospective applications: an overview. Appl. Microbiol. Biotechnol. 2006;(70):21–33.

31. Hessing G.C., van Laarhoven H., Rooke J.A., Morgan A. Quality of soyabean meals (SBM) and effect of microbial enzymes in degrading soya antinutritional compounds (ANC). In: 2nd International Soyabean Processing and Utilization Conference, 1996. Bangkok, Thailand, p. 8-13.

32. Huang K.H., Ravindran V., Li X. and Bryden W.L. Influence of age on the apparent ileal amino acid digestibility of feed ingredients for broiler chickens. British Poultry Science, 2005;(46):236–245.

33. Huang Y., Busk P.K., Herbst F.A., Lange L. Genome and secretome analyses provide insights into keratin decomposition by novel proteases from the non-pathogenic fungus Onygena corvina. Appl. Microbiol. Biotechnol. 2015;(99):9635–9649.

34. Huang C., Ma D., Zang J., Zhang B., Sun B., Liu L., and Zhang S. Effect of keratinase on ileal amino acid digestibility in five feedstuffs fed to growing pigs. Asian-Australas J Anim Sci. 2018;(31):1946-1955.

35. Kelly R., Ellis G., Macdonald R., McPherson R., Middlewood P., Nuthall M., Rao G.-F., RoddickLanzilotta A., Sigurjonsson G., Singleton D. Keratin and Soluble Derivatives for a Nutraceutical and to Reduce Oxidative Stress and to Reduce Inflammation and to Promote Skin Health. U.S. Patent 0065506, 22 March 2007.

36. Korniłłowicz-Kowalska T., Bohacz J. Biodegradation of keratin waste: theory and practical aspects. Waste Manag. 2011;(31):1689–1701.

37. Laba W., Szczekala K.B. Keratinolytic proteases in biodegradation of pretreated feathers. Polish J. Environ. Stud. 2013;(22):1101–1109

38. Lange L., Huang Y., Busk P.K. Microbial decomposition of keratin in nature—a new hypothesis of industrial relevance. Appl. Microbiol. Biotechnol. 2016;(100):2083–2096.

39. Lakshmi P.J., Lakshmi V.V. Enhancement in nutritive value and in vitro digestability of keratinse treated feather meal. Intern. J. Scientific and Engineering Research. 2015;6(2):36- 40.

40. Larasati, D., Tsurayya, N., Koentjoro, M.P., Prasetyo, E.N. Keratinase from newly isolated strain of thermophilic Bacillus for chicken feed modification. AIP Conf. Proc. 2017. Р.1854.

41. Law F.L., Zulkifli I., Soleimani A.F., Liang J.B, Awad E.A. The effects of low-protein diets and protease supplementation on broiler chickens in a hot and humid tropical environment. Asianaustralas J. Anim. Sci. 2018;(31):1291-1300.

42. Lee S.A., Bedford M.R., Walk C.L. Meta-analysis: Explicit value of mono-component proteases in monogastric diets. Poultry Sci. 2018;(97):2078-2085.

43. Lee J.J., Kang J., Park S., Cho J.H, Oh S., Park D.J., PerezMaldonado R., Cho J.Y., Park I.H., Kim H.B., Song M. Effects of dietary protease on immune responses of weaned pigs. J. Anim. Sci. Technol. 2020;(62):174-179.

44. Lewis C.J., Catron D.V., Liu C.H., Speer V.C., Ashton G.C. Enzyme supplementation of baby pig diets. Agric. Food Chem. 1955;(3):1047–1050.

45. Li Q. Progress in Microbial Degradation of Feather Waste. Front Microbiol. 2019. 10:2717. doi:10.3389/fmicb.2019.02717.

46. Lin X., Shih J.C.H., Swaisgood H.E. Hydrolysis of feather keratin by immobilized keratinase. Appl. Environ. Microbiol. 1996;(62):4273-4275.

47. Lin X., Lee C.-G., Casale E.S., Shih J.C. Purification and characterization of a keratinase from a feather-degrading Bacillus licheniformis strain. Appl Environ Microbiol. 1992;(58):3271–3275.

48. López-Otín C., Bond J.S. Proteases: multifunctional enzymes in life and disease. J. Biol. Chem. 2008;(283):3043330437.

49. Lu P., Xue W.Y., Zhang X.L., Wu D.W., Ding L.R., Wen C., Zhou Y.M. Heat-induced protein oxidation of soybean meal impairs growth performance and antioxidant status of broilers. Poultry Science. 2019;(98):276-286.

50. Miura E.M.Y., Ferreira Da Silva R.S.D.S., Mizubuti I.Y., Ida, E.I. Cinética de Inativação de Inibidores de Tripsina e de Insolubilização de Proteínas de Diferentes Cultivares de Soja. Revista brasileira de zootecnia. 2005;(34):1659-1665.

51. Moers K., Celus I., Brijs K., Courtin C.M. and Delcour J.A. Endoxylanase substrate selectivity determines degradation of wheat water-extractable and water-unextractable arabinoxylan. Carbohydrate Research. 2005;(340):1319- 1327.

52. Monteiro M. R. P., Costa N. M. B., Oliveira M. G. D. A., Pires C. V., and Moreira M. A. Qualidade protéica de linhagens de soja com ausência do Inibidor de Tripsina Kunitz e das isoenzimas Lipoxigenases. Revista de Nutrição. 2004;17(2):195-205.

53. Morales A., Buenabad L., Castillo G., Vazquez L., Espinoza S., Htoo J.K., Cervantes M. Dietary levels of protein and free amino acids affect pancreatic proteases activities, amino acids transporters expression and serum amino acid concentrations in starter pigs J. Anim. Physiol. 2017;(101):723-732.

54. Moreno F.J., Clemente A. 2S albumin storage proteins: what makes them food allergens? Open Biochem. J. 2008;(2):11-23

55. Mynott T.L., Chandler D.S., Luke R.K.J. Efficacy of entericсoated protease in preventing attachment of enterotoxigenic escherichia coli anddiarrheal disease in the RITARD model. Infect. Immun. 1991;(59):3708–3714.

56. Mynott T.L., Luke R.K., Chandler D.S. Oral administration of protease inhibits enterotoxigenic Eschericia coli receptor activity in piglet smallintestine. Gut. 1996;(38):28–32.

57. Navone L., Speight R. Understanding the dynamics of keratin weakening and hydrolysis by proteases. PLoS ONE. 2018;(13):1–21.

58. Odetallah N.H., Wang J.J., Garlich J.D., Shih J.C.H. Keratinase in starter diets improves growth of broiler chicks. Poult Science. 2003;(82):664-670.

59. Onifade A.A., Al-Sane N.A., Al-Musallam A.A., Al-Zarban S. A review: potentials for biotechnological applications of keratindegrading microorganisms and their enzymes for nutritional improvement of feathers and other keratins as livestock feed resources. Bioresour. Technol.1998;(66ю :1–11.

60. Papastoitsis G., Wilson K.A. Initiation of the Degradation of the Soybean Kunitz and Bowman-Birk Trypsin Inhibitors by a Cysteine Protease. Plant Physiol. 1991;(96):1086-1092.

61. Qiu J., Wilkens C., Barrett K., Meyer A. S. Microbial enzymes catalyzing keratin degradation: Classification, structure, function. Biotechnology Advances. 2020;(44):1-22.

62. Rao M.B., Tanksale A.M., Ghatge M.S., Deshpande V.V. Molecular and Biotechnological Aspects of Microbial Proteases. Microbiology and molecular biology reviews. 1998;(62):597–635.

63. Ravindran V., Hendriks W.H, Camden B.J, Thomas D.V., Morel P.C.H., Butts C.A. Amino acid digestibility of meat and bone meals for broiler chickens. Aust. J. Agric. Res. 2002;(53):12571264.

64. Razzaq A., Shamsi S., Ali A., Ali Q., Sajjad M., Malik A., Ashraf M. Microbial Proteases Applications. Front Bioeng Biotechnol. 2019;12(7):110.

65. Singh R., Mittal A., Kumar M., Mehta P. K. Microbial Proteases in Commercial Applications. J Pharm Chem Biol. Sci. 2016;(4):365-374.

66. Sinkiewicz I., Staroszczyk H., Sliwinska A. Solubilization of keratins and functional properties of their isolates and hydrolysates. J. Food Biochem. 2018;(42):e12494.

67. Sun P., Li D.F., Li Z.J., Dong B., Wang F.L. Effects of glycinin on IgE-mediated increase of mast cell numbers and histamine release in the small intestine. J. Nutr. Biochem. 2007;(19):627-633.

68. Sun P., Li D., Dong D., Qiao S., Ma X. Effects of soybean glycinin on performance and immune function in early weaned pigs. Archives of Animal Nutrition. 2008;62(4):313-321.

69. Sundaram M., Legadavi R., Banu N.A., Gayathri V., Palanisammy A. A study of antibacterial activity of keratin nanoparticles from chicken feather waste against Staphylococcus aureus (Bovine mastitis bacteria) and its antioxidant activity. Eur. J. Biotechnol. Biosci. 2015;(6):1–5.

70. Suzuki Y., Tsujimoto Y., Matsui H., Watanabe K. Decomposition of extremely hard-to-degrade animal proteins by thermophilic bacteria. J. Biosci. Bioeng. 2006;(102):73–81.

71. Walk C.L., Pirgozliev V., Juntunen K., Paloheimo M., Ledoux D.R. Evaluation of novel protease enzymes on growth performance and apparent ileal digestibility of amino acids in poultry: enzyme screening. Poultry Sci. 2018;(97):2123-2138.

72. Wang B., Yang W., McKittrick J., Meyers M.A. Keratin: structure, mechanical properties, occurrence in biological organisms, and efforts of bioinspiration. Prog. Mater. Sci. 2016;(76):229-318.

73. Wang D., Piao X.S., Zeng Z.K, Lu T., Zhang Q, Li P.F., Xue L.F., Kim S.W. Effects of Keratinase on Performance, Nutrient Utilization, Intestinal Morphology, Intestinal Ecology and Inflammatory Response of Weaned Piglets Fed Diets with Different Levels of Crude Protein. Asian-Aust. J. Anim. Sci. 2011;(24):1718-1728.

74. Wang, H., Guo, Y., Shih, J.C.H. Effects of dietary supplementation of keratinase on growth performance, nitrogen retention and intestinalmorphology of broiler chickens fed diets with soybean and cottonseed meals. Anim. Feed Sci. Technol. 2008;(140):376–384.

75. Wang J.J., Garlich J.D., Shih J.C.H. Beneficial effects of versazyme, a keratinase feed additive, on body weight, feed conversion, and breast yield of broiler chickens. J Appl Poult Res. 2006;(15):544-550.

76. Wang Q.D., Zhang K.Y., Zhang Y., Bai S.P., Wang J.P., Peng H.W., Tian G., Xuan Y., Su Z.W., Zeng Q.F. Effects of dietary protein levels and protease supplementation on growth performance, carcass traits, meat quality, and standardized ileal digestibility of amino acid in Pekin ducks fed a complex diet. Poultry Sci. 2020;(99):3557-3566.

77. Williams C.M., Richter C.S., Mackenzie J.M., jr., Shih J.C.H. Isolation, Identification, and Characterization of a FeatherDegrading Bacterium. Applied and environmental microbiologym. 1990;(56):1509-1515.

78. Yoo J.S., Jang H.D., Lee J.H., Kim I.H. Effect of fermented soy bean protein on nitrogen balance and apparent fecal and ileal digestibility in weaned pigs. Asian-Aust. J. Anim. Sci. 2009;(22):1167-1173.

79. Yu B., Wu S.T, Liu C.C., Gauthier R., Chioua P.W.S. Effects of enzyme inclusion in a maize–soybean diet on broiler performance. Animal Feed Sci. Technol. 2007;(134):283-294.

80. Yu R.J., Harmon S.R., Blank F. Hair digestion by a keratinase of Trichophyton mentagrophytes. J. Invest. Dermatol. 1969;(53):166–171.

81. Yu S., Thoegersen J.B., Kragh K.M. Comparative study of protease hydrolysis reaction demonstrating Normalized Peptide Bond Cleavage Frequency and Protease Substrate Broadness Index. PLOS ONE. 2020. September. https://doi.org/10.1371/journal.pone.0239080.

82. Zuo J., Ling B., Long L., Li T., Lahaye L., Yang C., Feng D. Effect of dietary supplementation with protease on the growth performance, nutrientutilization, intestinal morphology, digestive enzymes and gene expression of weaned piglets. Anim. Nutr. 2015;(1):276-282.


Для цитирования:


Крюков В.С., Зиновьев С.В., Некрасов Р.В. Протеазы в питании моногастричных животных. Аграрная наука. 2021;344(1):30-38. https://doi.org/10.32634/0869-8155-2021-344-1-30-38

For citation:


Kryukov V.S., Zinoviev S.V., Nekrasov R.V. Proteases in the diet of monogastric animals. Agrarian science. 2021;344(1):30-38. (In Russ.) https://doi.org/10.32634/0869-8155-2021-344-1-30-38

Просмотров: 79


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 0869-8155 (Print)
ISSN 2686-701X (Online)