Preview

Agrarian science

Advanced search

The concept of an automated biological protection system for agro-industrial enterprises based on new plasma-optical technologies

https://doi.org/10.32634/0869-8155-2022-361-7-8-193-198

Abstract

The analysis of the physical and biological features of the new plasma-optical technology of biocidal treatment of objects and its potential applications for solving the problems of improving the biological safety of agroindustrial enterprises is given. The technology is based on the treatment of chemically and microbiologically polluted environmental objects — water, air, surfaces — with high-intensity pulsed optical radiation of a continuous spectrum. The priority directions of development of plasma-optical equipment for the agroindustrial complex and food production are considered. A new concept of a complex automated system for ensuring biological safety of agricultural enterprises in real time is proposed.

About the Authors

G. S. Axanyan
National Union of Swine Breeders
Russian Federation

Grigory Stepanovich Axanyan, Chief Expert in Sector Development

5, Skatertniy line, 121069, Moscow, Russian Federation 



V. V. Bagrov
Research Institute of Power Engineering Moscow Bauman State Technical University
Russian Federation

Valery Vladimirovich Bagrov, Candidate of Technical Sciences, Deputy Director

5, 2-nd Baumanskaya str., Moscow, 105005, Russian Federation 



A. S. Kamrukov
Research Institute of Power Engineering Moscow Bauman State Technical University
Russian Federation

Alexander Semevovich Kamrukov, Candidate of Technical Sciences, Associate Professor, Head of Department 

5, 2-nd Baumanskaya str., Moscow, 105005, Russian Federation 



V. I. Krylov
Research Institute of Power Engineering Moscow Bauman State Technical University, Moscow Bauman State Technical University
Russian Federation

Vladimir Ivanovich Krylov, Candidate of Technical Sciences, Director 

5, 2-nd Baumanskaya str., Moscow, 105005, Russian Federation



V. A. Ovcherenko
Limited Liability Company Ufa Breeding and Hybrid Center LLC
Russian Federation

Vladislav Andreevich Ovcherenko, General Manager

9, Parkovaya str., Ufa 450083, Russian Federation 



A. V. Ovcherenko
Limited Liability Company Ufa Breeding and Hybrid Center LLC
Russian Federation

Anton Vladislavovich Ovcherenko, specialist in bioengineering and bioinformatics

9, Parkovaya str., Ufa 450083, Russian Federation 



V. N. Sergeyev
Academy of Food Safety
Russian Federation

Valery Nikolaevich Sergeyev, Doctor of Technical Sciences, Professor, Corresponding Member of the Russian Academy of Sciences, President

35 Kutuzovsky Ave., Moscow, 121165, Moscow, Russian Federation 



References

1. Federal Law No. 492-FZ of December 30, 2020 “On Biological Safety in the Russian Federation” Access Mode http://www.kremlin.ru/acts/bank/46353/page/1 [Accessed January 28, 2022] (in Russian.).

2. Demirci A., Feng H., Krishnamurthy K. Food Safety Engineering Springer Nature Switzerland AG , 2020. 760 p.

3. Chizh T.V. Kozmin G.V. Polyakova L.P., Melnikova T.V. Radiation processing as a technological method to increase the level of food security. Bulletin of the Russian Academy of Natural Sciences. 2011; 4:44-49. (in Russian.).

4. Koz’mina G.V., Geraskina S.A., Sanzharovoj N.I. (general ed.) Radiation technologies in agriculture and the food industry. Obninsk: VNIIRAEH. 2015. 400 p. (in Russian.).

5. Musina O.N., Konovalov K.P. Radiation treatment of food raw materials and food products with ionizing radiation. Pishchevaya promyshlennost’. 2016. 400 p. (in Russian.).

6. Karmazinov F. V., Kostyuchenko S. V., Kudryavcev N. N., Khramenkov S. V. UV technologies in the modern world. Dolgoprudnyj: ID Intellekt. 2012. 392 p. (in Russian.).

7. Minamata Convention on Mercury. Available from: https://www.mercuryconvention.org/sites/default/files/2021-06/MinamataConvention-booklet-rus-full.pdf [Accessed January 28, 2022] (in Russian.)

8. Marshak I.S. (red.) Pulsed light sources. M.: Ehnergiya. 1978. 472 p. (in Russian.)

9. Dunn J., Ott T., Clark W. Pulsed-light treatment of food and packaging. Food Technol., 1995;49(9): 95–98.

10. Dunn J. Pulsed light and pulsed electric field for foods and eggs». Poultry Sci.. 1996;75: 1133–1136.

11. Dunn J., Burgess D., Leo F. Investigation of Pulsed Light for terminal Sterilization of WFI Filled Blwo/Fill/Seal Polyethylene Containers. PDA J. of Pharmaceutical Science and Technology. 1997;51(3):111–115.

12. Dunn J., Bushnell A., Ott T., Clark W. Pulsed white light food processing. Cereal Foods World. 1997;42(7): 510–515.

13. Rowan J. N., MacGregor J. S., Anderson J.G., Fouracre R. A., McIlvaney L., Fairish O. Pulsed-Light Inactivation of Food-Related Microorganisms. Applied and Environmental Microbiology. 1999;65(3): 1312–1315.

14. McDonald K., Curry R., Clevenger T., Brazos B., Unklesbay K., Eisestark A., Baker S., Golden J., Morgan R. A comparison of pulsed vs. continuous ultraviolet light sources for de-contamination of surfaces. Pulsed Power Conference, Digest of Technical Papers. 12th IEEE International. 1999;2: 1484-1488. DOI:10.1109/PPC.1999.823812

15. Bintsis T., Litopoulou-Tzanetaki E., Robinson R. K. Existing and potential application of ultraviolet light in the food industrydy — a critical review. Journal of the Science of Food and Agriculture. 2000;80: 637-645.

16. Liltved H., Landfald B. Effects of high intensity light on ultravioletirradiated and nonirradiated fish pathogenic bacteria. Water Research. 2000;34(2): 481–486.

17. Wekhof A. Disinfection with flash lamps. PDA J. of Pharmaceutical Science and Technology. 2000;54: 264–267.

18. Wekhof A., Trompeter F-J., Franken O. Pulsed UV Disintegration (PUVD): a new sterilization mechanism for packing and broad medical-hospital application. The First International Coference on Ulnraviolet Technologies, June 14-16, 2001, Washington D.C. USA. 2001. p. 1- 15.

19. Jun S., Irudayaraj J., Demirci A., Geiser D. Pulsed UV-light treatment of corn meal for inactivation of Aspergillus niger. Journal of Food Science and Technology. 2003;38: 883-888.

20. Takeshita K., Shibato J., Sameshima T., Fukunaga S., Isobe S., Arihara K., Itoh M. Damage of yeast cells induced by pulsed light irradiation. International Journal of Food Microbiology. 2003;85: 151–158.

21. Krishnamurthy K., Demirci A., Irudayaraj J. Inactivation of Staphylococcus aureus by pulsed UV-light sterilization. Journal of Food Protection. 2004;67(5): 1027–1030.

22. Gomez-Lopez V. M., Devlieghere F., Bonduelle V., Debevere J. Intense light pulses decontamination of minimally processed vegetables and their shelf-life. International Journal of Food Microbiology. 2005;103: 79-89.

23. Kaack K., Lyager B. Treatment of slices from carrot (Daucus carota) using high intensity white pulsed light. European Food Research and Technology. 2007; 224: 561-566.

24. Gómez-López V.M., Ragaert P., Debevere J., Devlieghere F. Pulsed light for food decontamination: a review. Trends Food Science and Technology. 2007;18: 464–473.

25. Elmnasser N., Guillou S., Leroi F., Orange N., Bakhrouf A., Federighi M. Pulsed-light system as a novel food decontamination technology: a review. Canadian Journal of Microbiology. 2007;53: 813-821.

26. Bohrerova Z., Shemer H., Lantis R., Impellitteri Ch.A., Linden K.G. Comparative disinfection efficiency of pulsed and continuous-wave UV irradiation technologies. Water Reseach. 2008;42: 2975–2982.

27. Fernández M., Manzano S., de la Hoz L., Ordóñez J. A., Hierro E. Pulsed light inactivation of Listeria monocytogenes through different plastic films. Foodborne Pathogens and Disease. 2009;6: 1265-1267.

28. Oms-Oliu G., Martín-Belloso O., Soliva-Fortuny R. Pulsed light treatments for food preservation. A review. Food and Bioprocess Technology. 2010;3: 13-23.

29. Choi M. S., Cheigh C. I., Jeong E. A., Shin J. K., Chung M. S. Nonthermal sterilization of Listeria monocytogenes in infant foods by intense pulsed light treatment. Journal of Food Engineering. 2010;97: 504-509.

30. Cheigh Ch.-I., Park M.-H., Chung M.-S., Shin J.-K., Park Y.-S. Comparison of intense pulsed light- and ultraviolet (UVC)-induced cell damage in Listeria monocytogenes and Escherichia coli O157: H7. Food Control. 2012;25(2): 654–659.

31. Mandal R., Mohammadi X., Wiktor A., Singh A., Singh A.P., Applications of Pulsed Light Decontamination Technology in Food Processing: An Overview. Appl. Sci. 2020;10: 3606; doi:10.3390/app1010360

32. Arkhipov V.P., Kamrukov A.S., Kozlov N.P., Korop E.D., Shashkovsky S.G., Yalovik M.S.. New ultraviolet technology for deep purification and disinfection of water. // Zh. Conversion.- 1996.- No. 6. S. 46-50. (In Russian)

33. Kozlov N.P. (ed) [et al.] Plasma technique and plasma technologies: Sat. scientific Proceedings of MSTU name N.E. Bauman. Moscow.: Research Center Engineer. 2003. 196 p. (In Russian)

34. Kamrukov A.S., Kozlov N.P., Shashkovskij S.G., Yalovik M.S. New biocidal ultraviolet technologies and devices for sanitation, microbiology and medicine. Bezopasnost’ zhiznedeyatel’nosti. 2003;1: 32 — 40 (In Russian.)

35. Arhipov V.P., Bazikov V.I., Kamrukov A.S., Kozlov N.P., Kuznecov EH.V., Pento V.B., Kharitonov V.D., Shashkovskij S.G., Yalovik M.S. New technology of disinfection of bulk food products. Storage and processing of agricultural raw materials. Khranenie i pererabotka sel’khozsyr’ya. 2005;9: 27 — 30 (In Russian.)

36. Kamrukov A.S., Kozlov N.P., Seliverstov A.F., Shashkovskij S.G., Yalovik M.S. Photochemical water purification by broadband pulsed UV radiation. Bezopasnost’ zhiznedeyatel’nosti. 2006;1: 38 — 44. 2: 21 -26. 3: 17 — 27 (In Russian.)

37. Kamrukov A.S., Kozlov N.P., Shashkovskij S.G., Yalovik M.S. Highintensity plasma-optical technologies for solving urgent environmental and biomedical problems. Bezopasnost’ zhiznedeyatel’nosti. 2009;3: 31 — 38 (In Russian.)

38. Shestopalov N.V., Akimkin V.G., Fedorova L.S., Skopin A.YU., Gol’dshtejn YA.A., Golubcov A.A., Kireev S.G., Polikarpov N.A., Shashkovskij S.G. Investigation of bactericidal efficiency of disinfection of air and open surfaces by pulsed ultraviolet radiation of the continuous spectrum. Medicinskij alfavit. 2017;19(2): 6 — 9 (In Russian.)

39. Zverev A.YU., Borisevich S. V., Chepurenkov N. YA., Masyakin D. N., Koval’chuk E. A., Bykov V. A., Trufanova V. V., Tutel’yan A. V., Tivanova E. V., Kvasova O. A., Akimkin V. G. Viricidal activity of pulsed ultraviolet radiation of the continuous spectrum in relation to the SARS-CoV-2 coronavirus. Medicinskij alfavit. 2020;18(1): 55 — 58 (In Russian.).

40. Official website of the manufacturer of pulsed ultraviolet devices for air disinfection LLC NPP Melitta — Access mode: https://melitta-uv.ru/ (accessed 28.01.2022).

41. Titov M.A., Karaulov A.K., Shevcov A.A., Bardina N.S., Gulenkin V.M., Dudnikov S.A. Methodological recommendations for safety assessment at pig breeding enterprises in the Russian Federation: approved by the Director «VNIIZZH». Vladimir: Federal’noe gosudarstvennoe uchrezhdenie «Federal’nyj centr okhrany zdorov’ya zhivotnykh». 2010. 52 p. (In Russian.)].

42. Baek, S. (ed) [et al.] Effects of HACCP system implementation on domestic livestock product plants. Korean journal for food science of animal resources. V. 32. 2012. 168-173p. DOI: http://doi.org/10.5851/kosfa.2012.32.2.168.

43. Kim, J. (ed) [et al.] Perception of the HACCP system operators on livestock product manufac-turers. Journal of animal science and technology. V. 56. 2014. Iss. 19. DOI: http://doi.org/10.1186/2055-0391-56-19

44. GOST R 51705.1-2001. Quality system. Food quality management based on HACCP principles. General requirements. Vved. 2001. — 07.01. Moskva: Gosstandart Rossii IPK Izdatel›stvo standartov. 2004. 15 p. Available from: http://rpn.79.rospotrebnadzor.ru/sites/default/files/132618_453_sistema_kachestva.pdf [Accessed January 28, 2022] (in Russian.).


Review

For citations:


Axanyan G.S., Bagrov V.V., Kamrukov A.S., Krylov V.I., Ovcherenko V.A., Ovcherenko A.V., Sergeyev V.N. The concept of an automated biological protection system for agro-industrial enterprises based on new plasma-optical technologies. Agrarian science. 2022;1(7-8):193-198. (In Russ.) https://doi.org/10.32634/0869-8155-2022-361-7-8-193-198

Views: 293


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0869-8155 (Print)
ISSN 2686-701X (Online)
X