Expression of key genes in the caecum in CM5 and CM9 chickens of the meat cross «Smena 9» against the background of the replacement of fishmeal
https://doi.org/10.32634/0869-8155-2023-374-9-52-58
Abstract
Relevance. Dependence on fishmeal hinders the development of the poultry industry. The aim of the study was to analyze the expression of key genes in the parent stock of Gallus gallus L. lines CM5 and CM9 of the meat cross «Smena 9» on the background of diets with the replacement of fish meal.
Methods. Experiments were carried out on CM5 and CM9 chickens: groups 1A and 1B received the main diet (MD), 2A and 2B — MD with the replacement of fish meal with soy products, 3A and 3B — MD with the replacement of fish meal with sunflower products, 4A and 4B — MD with the replacement of fishmeal with soybean and sunflower products at a ratio of 50:50. Gene expression analysis was performed using quantitative reverse transcription PCR.
Results. The most pronounced changes in the levels of expression of key genes against the background of the replacement of fishmeal with soybean and sunflower processed products concerned the maternal line Plymouth Rock CM9 compared to the paternal line Cornish CM5. Thus, the expression of SOD mRNA in groups 2B, 3B and 4B decreased by 14.3–100 times compared with control 1B (р ≤ 0.05). Whereas in the experiment on the CM5 line, the expression of the SOD gene in the experimental groups 2A and 3A decreased by no more than 3.5 times compared with the control 1A (р ≤ 0.05). In all experimental groups, zootechnical indicators of meat and egg productivity were noted at the level of control groups (р > 0.05).
Keywords
About the Authors
E. A. YildirimRussian Federation
Elena Alexandrovna Yildirim, Doctor of Biological Sciences
19 Zagrebskiy boulevard, 1 building, Saint-Petersburg, 192288
L. A. Ilina
Russian Federation
Larisa Alexandrovna Ilina, Doctor of Biological Sciences
19 Zagrebskiy boulevard, 1 building, Saint-Petersburg, 192288
G. Y. Laptev
Russian Federation
George Yurievich Laptev, Doctor of Biological Sciences
19 Zagrebskiy boulevard, 1 building, Saint-Petersburg, 192288
V. A. Filippova
Russian Federation
Valentina Anatolievna Filippova, Biotechnologist
19 Zagrebskiy boulevard, 1 building, Saint-Petersburg, 192288
A. V. Dubrovin
Russian Federation
Andrey Valerievich Dubrovin, Candidate of Veterinary Sciences
19 Zagrebskiy boulevard, 1 building, Saint-Petersburg, 192288
D. G. Turina
Russian Federation
Darya Georgievna Tiurina, Candidate of Economic Sciences
19 Zagrebskiy boulevard, 1 building, Saint-Petersburg, 192288
K. A. Kalitkina
Russian Federation
Ksenya Andreevna Kalitkina, Biotechnologist
19 Zagrebskiy boulevard, 1 building, Saint-Petersburg, 192288
A. S. Dubrovina
Russian Federation
Alisa Sergeevna Dubrovina, Biotechnologist
19 Zagrebskiy boulevard, 1 building, Saint-Petersburg, 192288
E. S. Ponomareva
Russian Federation
Ekaterina Sergeevna Ponomareva, Biotechnologist
19 Zagrebskiy boulevard, 1 building, Saint-Petersburg, 192288
V. I. Fisinin
Russian Federation
Vladimir Ivanovich Fisinin, Academician of the Russian Academy of Sciences, Doctor of Agricultural Sciences, Professor, Scientific Supervisor
10 Ptitsegradskaya Str., Sergiev Posad, 141311
I. A. Egorov
Russian Federation
Ivan Afanasievich Egorov, Academician of the Russian Academy of Sciences, Doctor of Biological Sciences, Professor, Head of the Poultry Feeding Research Department
10 Ptitsegradskaya Str., Sergiev Posad, 141311
T. A. Egorova
Russian Federation
Tatiana Anatolievna Egorova, Doctor of Agricultural Sciences, Deputy Director for Research
10 Ptitsegradskaya Str., Sergiev Posad, 141311
V. A. Manukyan
Russian Federation
Vardges Agavardovich Manukyan, Doctor of Agricultural Sciences, Senior Researcher, Head of the Department of Poultry Nutrition
10 Ptitsegradskaya Str., Sergiev Posad, 141311
T. N. Lenkova
Russian Federation
Tatyana Nikolaevna Lenkova, Doctor of Agricultural Sciences, Professor, Scientific Secretary
10 Ptitsegradskaya Str., Sergiev Posad, 141311
O. N. Degtyareva
Russian Federation
Olga Nikolaevna Degtyareva, Candidate of Agricultural Sciences, Researcher
10 Ptitsegradskaya Str., Sergiev Posad, 141311
References
1. Chen Yu., Ma J., Huang H., Zhong H. Effects of the replacement of fishmeal by soy protein concentrate on growth performance, apparent digestibility, and retention of protein and amino acid in juvenile pearl gentian grouper. PLoS ONE. 2019; 14(12): e0222780. https://doi.org/10.1371/journal.pone.0222780
2. Sørensen M., Stjepanovic N., Romarheim O.H., Krekling T., Storebakken T. Soybean meal improves the physical quality of extruded fish feed. Animal Feed Science and Technology. 2009; 149(1-2): 149–161. https://doi.org/10.1016/j.anifeedsci.2008.05.010
3. Kumar V., Barman D., Kumar K., Kumar V., Mandal S.C., De Clercq E. Antinutritional Factors in Plant Feedstuffs Used in Aquafeeds. World Aquaculture. 2012; 43(3): 64–68.
4. Francis G., Makkar H.P.S., Becker K. Antinutritional factors present in plant-derived alternate fish feed ingredients and their effects in fish. Aquaculture. 2001; 199(3-4): 197–227. https://doi.org/10.1016/S0044-8486(01)00526-9
5. Emanyilova Zh.V., Egorova A.V., Efimov D.N., Komarov A.A. Efficient highly productive new meat cross Smena-9 with federsex maternal parental form. E3S Web of Conferences. 2021; 247: 01035. https://doi.org/10.1051/e3sconf/202124701035
6. Emanuylova Zh.V., Egorova A.V., Efimov D.N., Komarov A.A. New maternal line of the Cornish breed of the «Smena» selection and genetic center. E3S Web of Conferences. 2021; 262: 02003. https://doi.org/10.1051/e3sconf/202126202003
7. Islam M.S., Howlider M.A.R., Uddin M.S., Kabir F., Alam J. Study on Reproductive Parameters of Barred Plymouth Rock, White Leghorn, Rhode Island Red and White Rock Breed of Cock. Journal of Biological Sciences. 2002; 2(9): 605–607. https://doi.org/10.3923/jbs.2002.605.607
8. Davis R.V.N., Lamont S.J., Rothschild M.F., Persia M.E., Ashwell C.M., Schmidt C.J. Transcriptome Analysis of Post-Hatch Breast Muscle in Legacy and Modern Broiler Chickens Reveals Enrichment of Several Regulators of Myogenic Growth. PLoS ONE. 2015; 10(3): e0122525. https://doi.org/10.1371/journal.pone.0122525
9. Navidshad B., Royan M. Effect of Dietary Fat on Gene Expression in Poultry, A Review. Critical Reviews™ in Eukaryotic Gene Expression. 2016; 26(4): 333–341. https://doi.org/10.1615/CritRevEukaryotGeneExpr.2016016859
10. Brannan K.E., Helfrich K.K., Flentke G.R., Smith S.M., Livingston K.A., Jansen van Rensburg C. Influence of incubation, diet, and sex on avian uncoupling protein expression and oxidative stress in market age broilers following exposure to acute heat stress. Poultry Science. 2022; 101(5): 101748. https://doi.org/10.1016/j.psj.2022.101748
11. Overbey E.G. et al. Transcriptomes of an Array of Chicken Ovary, Intestinal, and Immune Cells and Tissues. Frontiers in Genetics. 2021; 12: 664424. https://doi.org/10.3389/fgene.2021.664424
12. Niemann H., Kuhla B., Flachowsky G. Perspectives for feed-efficient animal production. Journal of Animal Science. 2011; 89(12): 4344–4363 https://doi.org/10.2527/jas.2011-4235
13. Gershwin L.J., Krawkowka S., Olsen R.G. Immunology and Immunopathology of Domestic Animals. 2nd ed. St. Louis: Mosby. 1995; x +195. ISBN 0-0816-6398-9
14. Grossowicz N., Ariel M. Methods for Determination of Lysozyme Activity. Methods of Biochemical Analysis. 1983; 29: 435–446. https://doi.org/10.1002/9780470110492.ch8
15. Livak K.J., Schmittgen T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2 −ΔΔC T Method. Methods. 2001; 25(4): 402–408. https://doi.org/10.1006/meth.2001.1262
16. Levy O. Antimicrobial proteins and peptides of blood: templates for novel antimicrobial agents. Blood. 2000; 96(8): 2664–2672.
17. Teyssier J.R., Brugaletta G., Sirri F., Dridi S., Rochell S.J. A review of heat stress in chickens. Part II: Insights into protein and energy utilization and feeding. Frontiers in Physiology. 2022; 13: 943612. https://doi.org/10.3389/fphys.2022.943612
18. Surai P.F., Kochish I.I., Fisinin V.I., Kidd M.T. Antioxidant Defence Systems and Oxidative Stress in Poultry Biology: An Update. Antioxidants. 2019; 8(7): 235. https://doi.org/10.3390/antiox8070235
19. Jiang W.-D. et al. Soyabean glycinin depresses intestinal growth and function in juvenile Jian carp (Cyprinus carpio var Jian): Protective effects of glutamine. British Journal of Nutrition. 2015; 114(10): 1569–1583. https://doi.org/10.1017/S0007114515003219
20. Kokou F. et al. Effects of Fish Meal Replacement by a Soybean Protein on Growth, Histology, Selected Immune and Oxidative Status Markers of Gilthead Sea Bream, Sparus aurata. Journal of World Aquaculture Society. 2015; 46(2): 115–128. https://doi.org/10.1111/jwas.12181
21. Wang Yu. et al. Chicken interferon regulatory factor 7 (IRF7) can control ALV-J virus infection by triggering type I interferon production through affecting genes related with innate immune signaling pathway. Developmental & Comparative Immunology. 2021; 119: 104026. https://doi.org/10.1016/j.dci.2021.104026
22. Terada T., Nii T., Isobe N., Yoshimura Yu. Changes in the Expression of Avian β-defensins (AvBDs) and Proinflammatory Cytokines and Localization of AvBD2 in the Intestine of Broiler Embryos and Chicks during Growth. The Journal of Poultry Science. 2018; 55(4): 280–287. https://doi.org/10.2141/jpsa.0180022
23. Crhanova M. et al. Immune Response of Chicken Gut to Natural Colonization by Gut Microflora and to Salmonella enterica Serovar Enteritidis Infection. Infection and Immunity. 2011; 79(7): 2755–2763. https://doi.org/10.1128/iai.01375-10
24. Su S., Dwyer D.M., Miska K.B., Fetterer R.H., Jenkins M.C., Wong E.A. Expression of host defense peptides in the intestine of Eimeria-challenged chickens. Poultry Science. 2017; 96(7): 2421–2427. https://doi.org/10.3382/ps/pew468
25. Thuresson E.D. et al. Prostaglandin Endoperoxide H Synthase-1: The Functions of Cyclooxygenase Active Site Residues in the Binding, Positioning, and Oxygenation of Arachidonic Acid. Journal of Biological Chemistry. 2001; 276(13): 10347–10357. https://doi.org/10.1074/jbc.M009377200
26. Kunzmann A.T., Murray L.J., Cardwell C.R., McShane C.M., McMenamin Ú.C., Cantwell M.M. PTGS2 (Cyclooxygenase-2) Expression and Survival among Colorectal Cancer Patients: A Systematic Review. Cancer Epidemiology, Biomarkers & Prevention. 2013; 22(9): 1490–1497. https://doi.org/10.1158/1055-9965.EPI-13-0263
27. Godefroy N., Foveau B., Albrecht S., Goodyer C.G., LeBlanc A.C. Expression and Activation of Caspase-6 in Human Fetal and Adult Tissues. PLoS ONE. 2013; 8(11): e79313. https://doi.org/10.1371/journal.pone.0079313
28. Graham R.K., Ehrnhoefer D.E., Hayden M.R. Caspase-6 and neurodegeneration. Trends in Neurosciences. 2011; 34(12): 646–656. https://doi.org/10.1016/j.tins.2011.09.001
29. Giaime E. et al. Loss of function of DJ-1 triggered by Parkinson’s disease-associated mutation is due to proteolytic resistance to caspase-6. Cell Death & Differentiation. 2010; 17(1): 158–169. https://doi.org/10.1038/cdd.2009.116
30. Xuran Liu et al. Replacement of fishmeal with soybean meal affects the growth performance, digestive enzymes, intestinal microbiota and immunity of Carassius auratus gibelio♀ × Cyprinus carpio♂. Aquaculture Reports. 2020; 18: 100472. https://doi.org/10.1016/j.aqrep.2020.100472
31. Michel M.C., Mayoux E., Vallon V. A comprehensive review of the pharmacodynamics of the SGLT2 inhibitor empagliflozin in animals and humans. Naunyn-Schmiedeberg’s Archives of Pharmacology. 2015; 388(8): 801–816. https://doi.org/10.1007/s00210-015-1134-1
Review
For citations:
Yildirim E.A., Ilina L.A., Laptev G.Y., Filippova V.A., Dubrovin A.V., Turina D.G., Kalitkina K.A., Dubrovina A.S., Ponomareva E.S., Fisinin V.I., Egorov I.A., Egorova T.A., Manukyan V.A., Lenkova T.N., Degtyareva O.N. Expression of key genes in the caecum in CM5 and CM9 chickens of the meat cross «Smena 9» against the background of the replacement of fishmeal. Agrarian science. 2023;(9):52-58. (In Russ.) https://doi.org/10.32634/0869-8155-2023-374-9-52-58