Preview

Аграрная наука

Расширенный поиск

Обзор исследований и технологий, применимых для цифровизации процесса оценки экстерьера животных в мясном и молочном животноводстве

https://doi.org/10.32634/0869-8155-2024-381-4-114-122

Аннотация

Для повышения эффективности животноводства ученые разрабатывают информационные и коммуникационные технологии, направленные на цифровизацию процесса оценки экстерьера животных. Этот обзор должен улучшить понимание этапов разработки систем, применимых в цифровизации процесса оценки экстерьера животных и использующих машинное зрение и нейросети глубокого обучения. Поиск был сосредоточен на нескольких вопросах: системы машинного зрения; обучающие наборы данных; системы сбора изображений; модели глубокого обучения; нейросети для обучения; параметры производительности и оценки систем. Машинное зрение является инновационным решением благодаря сочетанию датчиков и нейросетей, реализуя бесконтактный способ оценки условий содержания скота, поскольку камеры могут заменить наблюдения человеком. Используются два подхода к получению трехмерных изображений для задач цифровизации в животноводстве: съемка животных с помощью одной 3D-камеры, закрепленной в одном месте, и съемка с разных точек с использованием нескольких 3D-камер, которые фиксируют изображения животных и отдельные части их тел, таких как вымя. Особенности, извлекаемые из изображений, называемые дорсальными чертами, используются в качестве входных данных для моделей. В изученных публикациях использовались различные модели глубокого обучения, включая CNN, DNN, R-CNN и SSD в зависимости от задачи. Аналогично и нейросети, такие как EfficientNet, ShapeNet, DeepLabCut и RefineDet, были использованы для мониторинга здоровья животных, тогда как GoogleNet, AlexNet, NasNet, CapsNet, LeNet и ERFNet в основном используются для целей идентификации.

Об авторах

С. С. Юрочка
Федеральный научный агроинженерный центр ВИМ
Россия

Сергей Сергеевич Юрочка, кандидат технических наук, старший научный сотрудник

1-й Институтский проезд, 5, Москва, 109428



А. Р. Хакимов
Федеральный научный агроинженерный центр ВИМ
Россия

Артём Рустамович Хакимов младший научный сотрудник

1-й Институтский проезд, 5, Москва, 109428



Д. Ю. Павкин
Федеральный научный агроинженерный центр ВИМ
Россия

Дмитрий Юрьевич Павкин, кандидат технических наук, старший научный сотрудник

1-й Институтский проезд, 5, Москва, 109428



С. О. Базаев
Федеральный научный агроинженерный центр ВИМ
Россия

Савр Олегович Базаев, кандидат сельскохозяйственных наук, научный сотрудник

1-й Институтский проезд, 5, Москва, 109428



И. В. Комков
Федеральный научный агроинженерный центр ВИМ
Россия

Илья Владимирович Комков, магистрант, специалист

1-й Институтский проезд, 5, Москва, 109428



Список литературы

1. Лобачевский Я.П., Дорохов А.С. Цифровые технологии и роботизированные технические средства для сельского хозяйства. Сельскохозяйственные машины и технологии. 2021; 15(4): 6–10. https://doi.org/10.22314/2073-7599-2021-15-4-6-10

2. Ценч Ю.С. Научно-технический потенциал как главный фактор развития механизации сельского хозяйства. Сельскохозяйственные машины и технологии. 2022; 16(2): 4–13. https://doi.org/10.22314/2073-7599-2022-16-2-4-13

3. Павкин Д.Ю., Юрочка С.С., Хакимов А.Р., Довлатов И.М. Разработка модульной системы цифровизации бонитировочных работ. Сельскохозяйственные машины и технологии. 2022; 16(4): 54–59. https://doi.org/10.22314/2073-7599-2022-16-4-54-59

4. Meen G.H., Schellekens M.A., Slegers M.H.M., Leenders N.L.G., van Erp-van der Kooij E., Noldus L.P.J.J. Sound analysis in dairy cattle vocalisation as a potential welfare monitor. Computers and Electronics in Agriculture. 2015; 118: 111–115. https://doi.org/10.1016/j.compag.2015.08.028

5. Halachmi I., Guarino M. Editorial: Precision livestock farming: a “per animal” approach using advanced monitoring technologies. animal. 2016; 10(9): 1482–1483. https://doi.org/10.1017/S1751731116001142

6. Banhazi T.M. et al. Precision Livestock Farming: An international review of scientific and commercial aspects. International Journal of Agricultural and Biological Engineering. 2012; 5(3): 1. https://doi.org/10.3965/j.ijabe.20120503.001

7. Wilkins J.F., McKiernan W.A., Walmsley B.J., McPhee M.J. Automated data capture using laser technology to enhance live cattle assessment and description. Australian Farm Business Management Journal. 2015; 12: 70–77. https://doi.org/10.22004/ag.econ.284945

8. Hansen M.F., Smith M.L., Smith L.N., Jabbar K.A., Forbes D. Automated monitoring of dairy cow body condition, mobility and weight using a single 3D video capture device. Computers in Industry. 2018; 98: 14–22. https://doi.org/10.1016/j.compind.2018.02.011

9. OʼLeary N., Leso L., Buckley F., Kenneally J., McSweeney D., Shalloo L. Validation of an Automated Body Condition Scoring System Using 3D Imaging. Agriculture. 2020; 10(6): 246. https://doi.org/10.3390/agriculture10060246

10. Gaudioso V., Sanz-Ablanedo E., Lomillos J.M., Alonso M.E., Javares-Morillo L., Rodríguez P. “Photozoometer”: A new photogrammetric system for obtaining morphometric measurements of elusive animals. Livestock Science. 2014; 165: 147–156. https://doi.org/10.1016/j.livsci.2014.03.028

11. Ruchay A., Kober V., Dorofeev K., Kolpakov V., Miroshnikov S. Accurate body measurement of live cattle using three depth cameras and non-rigid 3D shape recovery. Computers and Electronics in Agriculture. 2020; 179: 105821. https://doi.org/10.1016/j.compag.2020.105821

12. Martins B.M. et al. Estimating body weight, body condition score, and type traits in dairy cows using three dimensional cameras and manual body measurements. Livestock Science. 2020; 236: 104054. https://doi.org/10.1016/j.livsci.2020.104054

13. Kamchen S.G., dos Santos E.F., Lopes L.B., Vendrusculo L.G., Condotta I.C.F.S. Application of depth sensor to estimate body mass and morphometric assessment in Nellore heifers. Livestock Science. 2021; 245: 104442. https://doi.org/10.1016/j.livsci.2021.104442

14. Zin T.T., Seint P.T., Tin P., Horii Y., Kobayashi I. Body Condition Score Estimation Based on Regression Analysis Using a 3D Camera. Sensors. 2020; 20(13): 3705. https://doi.org/10.3390/s20133705

15. Van Hertem T. et al. Lameness detection in dairy cattle: single predictor v. multivariate analysis of image-based posture processing and behavior and performance sensing. animal. 2016; 10(9): 1525–1532. https://doi.org/10.1017/s1751731115001457

16. Schlageter-Tello A., Van Hertem T., Bokkers E.A.M., Viazzi S., Bahr C., Lokhorst K. Performance of human observers and an automatic 3-dimensional computer-vision-based locomotion scoring method to detect lameness and hoof lesions in dairy cows. Journal of Dairy Science. 2018; 101(7): 6322–6335. https://doi.org/10.3168/jds.2017-13768

17. Banhazi T.M., Black J.L. Precision Livestock Farming: A Suite of Electronic Systems to Ensure the Application of Best Practice Management on Livestock Farms. Australian Journal of Multi-Disciplinary Engineering. 2009; 7(1): 1–14. https://doi.org/10.1080/14488388.2009.11464794

18. Tan C., Sun F., Kong T., Zhang W., Yang C., Liu C. A Survey on Deep Transfer Learning. The 27th International Conference on Artificial Neural Networks (ICANN 2018). 2018. https://doi.org/10.48550/arXiv.1808.01974

19. Psota E.T. et al. Development and validation of a neural network for the automated detection of horn flies on cattle. Computers and Electronics in Agriculture. 2021; 180: 105927. https://doi.org/10.1016/j.compag.2020.105927

20. Jiang B., Wu Q., Yin X., Wu D., Song H., He D. FLYOLOv3 deep learning for key parts of dairy cow body detection. Computers and Electronics in Agriculture. 2019; 166: 104982. https://doi.org/10.1016/j.compag.2019.104982

21. Weber F.d.L. et al. Recognition of Pantaneira cattle breed using computer vision and convolutional neural networks. Computers and Electronics in Agriculture. 2020; 175: 105548. https://doi.org/10.1016/j.compag.2020.105548

22. Kang X., Zhang X.D., Liu G. Accurate detection of lameness in dairy cattle with computer vision: A new and individualized detection strategy based on the analysis of the supporting phase. Journal of Dairy Science. 2020; 103(11): 10628–10638. https://doi.org/10.3168/jds.2020-18288

23. Xudong Z., Xi K., Ningning F., Gang L. Automatic recognition of dairy cow mastitis from thermal images by a deep learning detector. Computers and Electronics in Agriculture. 2020; 178: 105754. https://doi.org/10.1016/j.compag.2020.105754

24. Gjergji M. et al. Deep Learning Techniques for Beef Cattle Body Weight Prediction. 2020 International Joint Conference on Neural Networks (IJCNN). 2020; 1–8. https://doi.org/10.1109/IJCNN48605.2020.9207624

25. Jabbar K.A., Hansen M.F., Smith M.L., Smith L.N. Early and non-intrusive lameness detection in dairy cows using 3-dimensional video. Biosystems Engineering. 2017; 153: 63–69. https://doi.org/10.1016/j.biosystemseng.2016.09.017

26. Guo H., Ma X., Ma Q., Wang K., Su W., Zhu D. LSSA_CAU: An interactive 3d point clouds analysis software for body measurement of livestock with similar forms of cows or pigs. Computers and Electronics in Agriculture. 2017; 138: 60–68. https://doi.org/10.1016/j.compag.2017.04.014

27. Slob N., Catal C., Kassahun A., Application of machine learning to improve dairy farm management: A systematic literature review. Preventive Veterinary Medicine. 2021; 187: 105237. https://doi.org/10.1016/j.prevetmed.2020.105237

28. Lovarelli D., Bacenetti J., Guarino M. A review on dairy cattle farming: Is precision livestock farming the compromise for an environmental, economic and social sustainable production? Journal of Cleaner Production. 2020; 262: 121409. https://doi.org/10.1016/j.jclepro.2020.121409

29. García R., Aguilar J., Toro M., Pinto A., Rodríguez P. A systematic literature review on the use of machine learning in precision livestock farming. Computers and Electronics in Agriculture. 2020; 179: 105826. https://doi.org/10.1016/j.compag.2020.105826

30. Harrison S.M. et al. Three-dimensional growth of bovine hoof as recorded by carbon stable isotope ratios. Rapid Communications in Mass Spectrometry. 2007; 21(24): 3971–3976. https://doi.org/10.1002/rcm.3309

31. Berckmans D. General introduction to precision livestock farming. Animal Frontiers. 2017; 7(1): 6–11. https://doi.org/10.2527/af.2017.0102

32. Neethirajan S. Recent advances in wearable sensors for animal health management. Sensing and Bio-Sensing Research. 2017; 12: 15–29. https://doi.org/10.1016/j.sbsr.2016.11.004

33. Viazzi C. et al. Comparison of a three-dimensional and two-dimensional camera system for automated measurement of back posture in dairy cows. Computers and Electronics in Agriculture. 2014; 100: 139–147. https://doi.org/10.1016/j.compag.2013.11.005

34. Song X., Bokkers E.A.M., van Mourik S., Groot Koerkamp P.W.G., van der Tol P.P.J. Automated body condition scoring of dairy cows using 3-dimensional feature extraction from multiple body regions. Journal of Dairy Science. 2019; 102(5): 4294–4308. https://doi.org/10.3168/jds.2018-15238

35. Salau J., Bauer U., Haas J.H., Thaller G., Harms J., Junge W. Quantification of the effects of fur, fur color, and velocity on Time-Of-Flight technology in dairy production. SpringerPlus. 2015; 4: 144. https://doi.org/10.1186/s40064-015-0903-0

36. Cominotte A. et al. Automated computer vision system to predict body weight and average daily gain in beef cattle during growing and finishing phases. Livestock Science. 2020; 232: 103904. https://doi.org/10.1016/j.livsci.2019.103904

37. Nasirahmadi A., Edwards S.A., Sturm B. Implementation of machine vision for detecting behaviour of cattle and pigs. Livestock Science. 2017; 202: 25–38. https://doi.org/10.1016/j.livsci.2017.05.014

38. Wang Z., Shadpour S., Chan E., Rotondo V., Wood K.M., Tulpan D. ASAS-NANP SYMPOSIUM: Applications of machine learning for livestock body weight prediction from digital images. Journal of Animal Science. 2021; 99(2): skab022. https://doi.org/10.1093/jas/skab022

39. Salau J., Haas J.H., Junge W., Thaller G. Extrinsic calibration of a multi-Kinect camera scanning passage for measuring functional traits in dairy cows. Biosystems Engineering. 2016; 151: 409–424. https://doi.org/10.1016/j.biosystemseng.2016.10.008

40. Salau J., Haas J.H., Junge W., Thaller G. Determination of Body Parts in Holstein Friesian Cows Comparing Neural Networks and k Nearest Neighbour Classification. Animals. 2020; 11(1): 50. https://doi.org/10.3390/ani11010050

41. Salau J., Haas J.H., Junge W., Thaller G. Automated calculation of udder depth and rear leg angle in Holstein-Friesian cows using a multi-Kinect cow scanning system. Biosystems Engineering. 2017; 160: 154–169. https://doi.org/10.1016/j.biosystemseng.2017.06.006

42. Salau J., Haas J.H., Thaller G., Leisen M., Junge W. Developing a multi-Kinect-system for monitoring in dairy cows: object recognition and surface analysis using wavelets. Animal. 2016; 10(9): 1513–1524. https://doi.org/10.1017/s1751731116000021

43. Van Hertem T. et al. Automatic lameness detection based on consecutive 3D-video recordings. Biosystems Engineering. 2014; 119: 108–116. https://doi.org/10.1016/j.biosystemseng.2014.01.009

44. Le Cozler Y. et al. Volume and surface area of Holstein dairy cows calculated from complete 3D shapes acquired using a high-precision scanning system: Interest for body weight estimation. Computers and Electronics in Agriculture. 2019; 165: 104977. https://doi.org/10.1016/j.compag.2019.104977

45. Pezzuolo A., Guarino M., Sartori L., Marinello F. A Feasibility Study on the Use of a Structured Light Depth-Camera for Three-Dimensional Body Measurements of Dairy Cows in Free-Stall Barns. Sensors. 2018; 18(2): 673. https://doi.org/10.3390/s18020673

46. Shigeta M., Ike R., Takemura H., Ohwada H. Automatic Measurement and Determination of Body Condition Score of Cows Based on 3D Images Using CNN. Journal of Robotics and Mechatronics. 2018; 30(2): 206–213. https://doi.org/10.20965/jrm.2018.p0206

47. Spoliansky R., Edan Y., Parmet Y., Halachmi I. Development of automatic body condition scoring using a low-cost 3-dimensional Kinect camera. Journal of Dairy Science. 2016; 99(9): 7714–7725. https://doi.org/10.3168/jds.2015-10607

48. Fischer A., Luginbühl T., Delattre L., Delouard J.M., Faverdin P. Rear shape in 3 dimensions summarized by principal component analysis is a good predictor of body condition score in Holstein dairy cows. Journal of Dairy Science. 2015; 98(7): 4465–4476. https://doi.org/10.3168/jds.2014-8969

49. Okura F., Ikuma S., Makihara Y., Muramatsu D., Nakada K., Yagi Y. RGB-D video-based individual identification of dairy cows using gait and texture analyses. Computers and Electronics in Agriculture. 2019; 165: 104944. https://doi.org/10.1016/j.compag.2019.104944

50. Le Cozler Y. et al. High-precision scanning system for complete 3D cow body shape imaging and analysis of morphological traits. Computers and Electronics in Agriculture. 2019; 157: 447–453. https://doi.org/10.1016/j.compag.2019.01.019

51. Huang L.W., Li S., Zhu A., Fan X., Zhang C., Wang H. Non-Contact Body Measurement for Qinchuan Cattle with LiDAR Sensor. Sensors. 2018; 18(9): 3014. https://doi.org/10.3390/s18093014

52. Huang L. et al. Body Dimension Measurements of Qinchuan Cattle with Transfer Learning from LiDAR Sensing. Sensors. 2019; 19(22): 5046. https://doi.org/10.3390/s19225046

53. Guesgen M.J., Bench C.J. Using kinematics to detect micro-behavioural changes relative to ovulation in naturally cycling tie-stall dairy heifers. Livestock Science. 2018; 207: 126–132. https://doi.org/10.1016/j.livsci.2017.11.019

54. Van Hertem T. et al. Implementation of an automatic 3D vision monitor for dairy cow locomotion in a commercial farm. Biosystems Engineering. 2018; 173: 166–175. https://doi.org/10.1016/j.biosystemseng.2017.08.011

55. Nir O., Parmet Y., Werner D., Adin G., Halachmi I. 3D Computer-vision system for automatically estimating heifer height and body mass. Biosystems Engineering. 2018; 173: 4–10. https://doi.org/10.1016/j.biosystemseng.2017.11.014

56. Lomillos J.M., Alonso M.E. Morphometric Characterization of the Lidia Cattle Breed. Animals. 2020; 10(7): 1180. https://doi.org/10.3390/ani10071180

57. Song X., Bokkers E.A.M., van der Tol P.P.J., Groot Koerkamp P.W.G., van Mourik S. Automated body weight prediction of dairy cows using 3-dimensional vision. Journal of Dairy Science. 2018; 101(5): 4448–4459. https://doi.org/10.3168/jds.2017-13094

58. Brownlee J. Deep Learning for Computer Vision: Image Classification, Object Detection, and Face Recognition in Python. 2019; xviii, 544.

59. Wu D., Yin X., Jiang B., Jiang M., Li Z., Song H. Detection of the respiratory rate of standing cows by combining the Deeplab v3 + semantic segmentation model with the phase-based video magnification algorithm. Biosystems Engineering. 2020; 192: 72–89. https://doi.org/10.1016/j.biosystemseng.2020.01.012

60. Qiao Y., Su D., Kong H., Sukkarieh S., Lomax S., Clark C. BiLSTM-based Individual Cattle Identification for Automated Precision Livestock Farming. 2020 IEEE 16th International Conference on Automation Science and Engineering (CASE). 2020; 967–972. https://doi.org/10.1109/CASE48305.2020.9217026


Рецензия

Для цитирования:


Юрочка С.С., Хакимов А.Р., Павкин Д.Ю., Базаев С.О., Комков И.В. Обзор исследований и технологий, применимых для цифровизации процесса оценки экстерьера животных в мясном и молочном животноводстве. Аграрная наука. 2024;(4):114-122. https://doi.org/10.32634/0869-8155-2024-381-4-114-122

For citation:


Yurochka S.S., Khakimov A.R., Pavkin D.Yu., Bazaev S.O., Komkov I.V. Review of researches and technologies applicable to digitalization of the process of assessing the exterior of meat and dairy animals. Agrarian science. 2024;(4):114-122. (In Russ.) https://doi.org/10.32634/0869-8155-2024-381-4-114-122

Просмотров: 333


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 0869-8155 (Print)
ISSN 2686-701X (Online)
X