Dynamics of extraction of minerals from the feed substrate in vitro with including low molecular weight additives into rumen reaction medium
https://doi.org/10.32634/0869-8155-2025-392-03-47-61
Abstract
The ban on the use of antibiotics for therapeutic purposes encourages the search for highly effective alternatives, one of which is phytobiotics. However, before their large-scale implementation into practice, it is necessary to conduct a detailed assessment of the impact on various aspects of life.
The aim of the work was to study the dynamics of the elemental profile of the ruminant rumen in vitro when vanillin, transcoric aldehyde, dihydroxyquercetin and 7-hydroxycoumarin were introduced into feed.
The study was conducted on a single-quadrupole inductively coupled plasma mass spectrometer Agilent 7900 ICP-MS (Agilent, USA). The analysis of elements such as Cr, Fe and Zn was carried out in the helium mode using a collision cell. During the work, it was found that vanillin in concentrations from 1,225 × 10-4 to 4,900 × 10-4 mol/l reduces the accumulation of copper, cobalt and lead, stimulating the extraction of manganese, iron, aluminum and barium. Quercetin and cinnamic aldehyde, on the contrary, inhibit the extraction of almost all the studied elements. Coumarin, on the other hand, contributes more to the extraction of minerals from the cellulose matrix of plant components of the feed, with the exception of copper, cobalt and zinc. At the same time, the best effect is detected by a combination of quercetin and vanillin at concentrations of 2,450 × 10-4 and 1,225 × 10-4 mol/l, respectively. All the studied substances demonstrate the potential for the correction of hypo- and hyperelementoses of various types.
Keywords
About the Authors
K. N. AtlanderovaRussian Federation
Ksenia N. Atlanderova - Candidate of Biological Sciences, Researcher.
29 9th Yanvarya Str., Orenburg, 460000
D. E. Shoshin
Russian Federation
Daniil E. Shoshin - Junior Researcher.
29 9th Yanvarya Str., Orenburg, 460000
K. A. Kazaev
Russian Federation
Kirill A. Kazaev - Junior Researcher.
29 9th Yanvarya Str., Orenburg, 460000
References
1. Han D. et al. Application and substitution of antibiotics in animal feeding. Medycyna Weterynaryjna. 2024; 80(1): 5–11. https://doi.org/10.21521/mw.6830
2. Meek R.W., Vyas H., Piddock L.J.V. Nonmedical Uses of Antibiotics: Time to Restrict Their Use?. PLoS Biology. 2015; 13(10): e1002266. https://doi.org/10.1371/journal.pbio.1002266
3. Oliveira N.A., Gonçalves B.L., Lee S.H., Oliveira C.A.F., Corassin C.H. Use of Antibiotics in Animal Production and its Impact on Human Health. Journal of Food Chemistry and Nanotechnology. 2020; 6(1): 40–47. https://doi.org/10.17756/jfcn.2020-082
4. Shoshin D.E., Sizova E.A., Kamirova A.M. Bacterial luminescence of manganese- and cobalt-containing ultrafine particles (Mn2O3 and Co3O4) in the rumen fluid. Agricultural Biology. 2023; 58(6): 1122–1136. https://doi.org/10.15389/agrobiology.2023.6.1122eng
5. Ebeid T. et al. Impact of probiotics and/or organic acids supplementation on growth performance, microbiota, antioxidative status, and immune response of broilers. Italian Journal of Animal Science. 2021; 20(1): 2263–2273. https://doi.org/10.1080/1828051X.2021.2012092
6. Shoshin D.E., Sizova E.A., Kamirova A.M. Morphological changes and luminescence of Escherichia coli in contact with Mn2O3 and Co3O4 ultrafine particles as components of a mineral feed additive. Veterinary World. 2024; 17(8): 1880–1888. https://doi.org/10.14202/vetworld.2024.1880-1888
7. Mba I.E., Nweze E.I. Nanoparticles as therapeutic options for treating multidrug-resistant bacteria: research progress, challenges, and prospects. World Journal of Microbiology and Biotechnology. 2021; 37: 108. https://doi.org/10.1007/s11274-021-03070-x
8. Sizova E.A., Nechitailo K.S., Lebedev S.V. Phytobiotics as potential regulators of the gut microbiome composition and functional activity in broiler chickens (а mini-review). Agricultural Biology. 2022; 57(6): 1071–1082. https://doi.org/10.15389/agrobiology.2022.6.1071eng
9. Urban J. et al. Enhancing broiler chicken health and performance: the impact of phytobiotics on growth, gut microbiota, antioxidants, and immunity. Phytochemistry Reviews. 2024. https://doi.org/10.1007/s11101-024-09994-0
10. Sheida E.V., Ryazanov V.A., Duskaev G.K., Rakhmatullin Sh.G., Kvan O.V. Influence of Artemisiae absinthil herba and Inulae rhizomata et radices on fermentation processes and methanogenesis in the rumen of young cattle. Agrarian science. 2023; (3): 46–51 (in Russian). https://doi.org/10.32634/0869-8155-2023-368-3-46-51
11. Mohammadi Gheisar M., Kim I.H. Phytobiotics in poultry and swine nutrition (a review). Italian Journal of Animal Science. 2018; 17(1): 92–99. https://doi.org/10.1080/1828051X.2017.1350120
12. Bagno O.A., Prokhorov O.N., Shevchenko S.A., Shevchenko A.I., Dyadichkina T.V. Use of phytobioticts in farm animal feeding (review). Agricultural Biology. 2018; 53(4): 687–697. https://doi.org/10.15389/agrobiology.2018.4.687eng
13. Ryazanov V.A., Kurilkina M.Ya., Duskaev G.K., Gabidulin V.M. Phytobiotics as an alternative to antibiotics in animal husbandry (review). Animal husbandry and fodder production. 2021; 104(4): 108–123 (in Russian). https://doi.org/10.33284/2658-3135-104-4-108
14. Zaikina A.S., Buryakov N.P., Buryakova M.A., Zagarin A.Yu., Razhev A.A., Aleshin D.E. Impact of Supplementing Phytobiotics as a Substitute for Antibiotics in Broiler Chicken Feed on Growth Performance, Nutrient Digestibility, and Biochemical Parameters. Veterinary Sciences. 2022; 9(12): 672. https://doi.org/10.3390/vetsci9120672
15. Atlanderova K., Shoshin D., Kazaev K. Amino acid status and nitrogen forms of rumen contents in vitro when phytogenic components are added to the reaction medium. E3S Web of Conferences. 2024; 548: 02006. https://doi.org/10.1051/e3sconf/202454802006
16. Bhalakiya N., Haque N., Patel P., Joshi P. Role of Trace Minerals in Animal Production and Reproduction. International Journal of Livestock Research. 2019; 9(9): 1–12.
17. Mousavi Khaneghah A., Fakhri Y., Nematollahi A., Pirhadi M. Potentially toxic elements (PTEs) in cereal-based foods: A systematic review and meta-analysis. Trends in Food Science & Technology. 2020; 96: 30–44. https://doi.org/10.1016/j.tifs.2019.12.007
18. Arya S.S., Rookes J.E., Cahill D.M., Lenka S.K. Vanillin: a review on the therapeutic prospects of a popular flavouring molecule. Advances in Traditional Medicine. 2021; 21(3): 415–432. https://doi.org/10.1007/s13596-020-00531-w
19. Salehi B. et al. Therapeutic Potential of Quercetin: New Insights and Perspectives for Human Health. ACS Omega. 2020; 5(20): 11849–11872. https://doi.org/10.1021/acsomega.0c01818
20. Błaszczyk N., Rosiak A., Kałużna-Czaplińska J. The Potential Role of Cinnamon in Human Health. Forests. 2021; 12(5): 648. https://doi.org/10.3390/f12050648
21. Garg S.S., Gupta J., Sharma S., Sahu D. An insight into the therapeutic applications of coumarin compounds and their mechanisms of action. European Journal of Pharmaceutical Sciences. 2020; 152: 105424. https://doi.org/10.1016/j.ejps.2020.105424
22. Shoshin D.E., Atlanderova K.N., Duskaev G.K., Sizova E.A. Small molecules in the bacterial luminescence inhibition test. Siberian Journal of Life Sciences and Agriculture. 2023; 15(4): 29–55 (in Russian). https://doi.org/10.12731/2658-6649-2023-15-4-29-55
23. Vlasenko L.V., Atlanderova K.N., Duskaev G.K., Shoshin D.E. The effect of phytochemicals on the signaling molecules of the “Quorum Sensing” system in bacteria. International Bulletin of Veterinary Medicine. 2023; (2): 25–31 (in Russian). https://doi.org/10.52419/issn2072-2419.2023.2.25
24. Hua D., Hendriks W.H., Xiong B., Pellikaan W.F. Starch and Cellulose Degradation in the Rumen and Applications of Metagenomics on Ruminal Microorganisms. Animals. 2022; 12(21): 3020. https://doi.org/10.3390/ani12213020
25. Fraga M., Fernández S., Perelmuter K., Pomiés N., Cajarville C., Zunino P. The use of Prevotella bryantii 3C5 for modulation of the ruminal environment in an ovine model. Brazilian Journal of Microbiology. 2018; 49(S1): 101–106. https://doi.org/10.1016/j.bjm.2018.07.004
26. Rodríguez Hernáez J. et al. The first complete genomic structure of Butyrivibrio fibrisolvens and its chromid. Microbial Genomics. 2018; 4(10): e000216. https://doi.org/10.1099/mgen.0.000216
27. Ward B.K., Dufault R.J., Hassell R., Cutulle M.A. Upscaled Bioammonium/Ammonia Production by Clostridium Aminophilum Cultured with Soy Protein Isolate. Journal of Agricultural and Food Chemistry. 2017; 65(14): 2930–2935. https://doi.org/10.1021/acs.jafc.7b00113
28. Liu Y., Kong D., Wu H.-L., Ling H.-Q. Iron in plant–pathogen interactions. Journal of Experimental Botany. 2021; 72(6): 2114–2124. https://doi.org/10.1093/jxb/eraa516
29. Hilal E.Y., Elkhairey M.A.E., Osman A.O.A. The Role of Zinc, Manganse and Copper in Rumen Metabolism and Immune Function: A Review Article. Open Journal of Animal Sciences. 2016; 6(4): 304–324. https://doi.org/10.4236/ojas.2016.64035
30. Schlattl M., Buffler M., Windisch W. Clay Minerals Affect the Solubility of Zn and Other Bivalent Cations in the Digestive Tract of Ruminants In Vitro. Animals. 2021; 11(3): 877. https://doi.org/10.3390/ani11030877
31. Tsang T., Davis C.I., Brady D.C. Copper biology. Current Biology. 2021; 31(9): R421–R427. https://doi.org/10.1016/j.cub.2021.03.054
32. De Baaij J.H.F., Hoenderop J.G.J., Bindels R.J.M. Magnesium in Man: Implications for Health and Disease. Physiological Reviews. 2015; 95(1): 1–46. https://doi.org/10.1152/physrev.00012.2014
33. Palmer B.F., Clegg D.J. Physiology and pathophysiology of potassium homeostasis. Advances in Physiology Education. 2016; 40(4): 480–490. https://doi.org/10.1152/advan.00121.2016
34. Hu X., Wei X., Ling J., Chen J. Cobalt: An Essential Micronutrient for Plant Growth?. Frontiers in Plant Science. 2021; 12: 768523. https://doi.org/10.3389/fpls.2021.768523
35. Alvino L., Pacheco-Herrero M., López-Lorente Á.I., Quiñones Z., Cárdenas S., González-Sánchez Z.I. Toxicity evaluation of barium ferrite nanoparticles in bacteria, yeast and nematode. Chemosphere. 2020; 254: 126786. https://doi.org/10.1016/j.chemosphere.2020.126786
36. Assi M.A., Hezmee M.N.M., Haron A.W., Sabri M.Y.M., Rajion M.A. The detrimental effects of lead on human and animal health. Veterinary World. 2016; 9(6): 660–671. https://doi.org/10.14202/vetworld.2016.660-671
37. Tahir I., Alkheraije K.A. A review of important heavy metals toxicity with special emphasis on nephrotoxicity and its management in cattle. Frontiers in Veterinary Science. 2023; 10: 1149720. https://doi.org/10.3389/fvets.2023.1149720
38. Mezzaroba L., Alfieri D.F., Simão A.N.C., Reiche E.M.V. The role of zinc, copper, manganese and iron in neurodegenerative diseases. NeuroToxicology. 2019; 74: 230–241. https://doi.org/10.1016/j.neuro.2019.07.007
39. Li L., Yang X. The Essential Element Manganese, Oxidative Stress, and Metabolic Diseases: Links and Interactions. Oxidative Medicine and Cellular Longevity. 2018; 1: 7580707. https://doi.org/10.1155/2018/7580707
40. Bosma E.F., Rau M.H., van Gijtenbeek L.A., Siedler S. Regulation and distinct physiological roles of manganese in bacteria. FEMS Microbiology Reviews. 2021; 45(6): fuab028. https://doi.org/10.1093/femsre/fuab028
41. Ellis J.L. et al. The effect of lactic acid bacteria included as a probiotic or silage inoculant on in vitro rumen digestibility, total gas and methane production. Animal Feed Science and Technology. 2016; 211: 61–74. https://doi.org/10.1016/j.anifeedsci.2015.10.016
42. Vigh A., Criste A., Gragnic K., Moquet L., Gerard C. Ruminal Solubility and Bioavailability of Inorganic Trace Mineral Sources and Effects on Fermentation Activity Measured in Vitro. Agriculture. 2023; 13(4): 879. https://doi.org/10.3390/agriculture13040879
43. Baj J. et al. Consequences of Disturbing Manganese Homeostasis. International Journal of Molecular Sciences. 2023; 24(19): 14959. https://doi.org/10.3390/ijms241914959
44. Wysocka D., Snarska A., Sobiech P. Iron in cattle health. Journal of Elementology. 2020; 25(3): 1175–1185. https://doi.org/10.5601/jelem.2020.25.2.1960
45. Puig S., Ramos-Alonso L., Romero A.M., Martínez-Pastor M.T. The elemental role of iron in DNA synthesis and repair. Metallomics. 2017; 9(11): 1483–1500. https://doi.org/10.1039/c7mt00116a
46. Díaz-Tocados J.M. et al. Effect of a calcium-rich diet on mineral and bone metabolism in rats. Revista de Osteoporosis y Metabolismo Mineral. 2022; 14(1): 48–54. https://doi.org/10.4321/S1889-836X2022000100006
47. Wilkens M.R., Nelson C.D., Hernandez L.L., McArt J.A.A. Symposium review: Transition cow calcium homeostasis — Health effects of hypocalcemia and strategies for prevention. Journal of Dairy Science. 2020; 103(3): 2909–2927. https://doi.org/10.3168/jds.2019-17268
48. Matikainen N., Pekkarinen T., Ryhänen E.M., Schalin-Jäntti C. Physiology of Calcium Homeostasis: An Overview. Endocrinology and Metabolism Clinics of North America. 2021; 50(4): 575–590. https://doi.org/10.1016/j.ecl.2021.07.005
49. Al-Fartusie F.S., Mohssan S.N. Essential Trace Elements and Their Vital Roles in Human Body. Indian Journal of Advances in Chemical Science. 2017; 5(3): 127–136.
50. Alfano M., Cavazza C. Structure, function, and biosynthesis of nickel‐dependent enzymes. Protein Science. 2020; 29(5): 1071–1089. https://doi.org/10.1002/pro.3836
51. Wang Y., Jiang M., Zhang Z., Sun H. Effects of over-load iron on nutrient digestibility, haemato-biochemistry, rumen fermentation and bacterial communities in sheep. Journal of Animal Physiology and Animal Nutrition. 2020; 104(1): 32–43. https://doi.org/10.1111/jpn.13225
52. Nguyen T.L.A., Bhattacharya D. Antimicrobial Activity of Quercetin: An Approach to Its Mechanistic Principle. Molecules. 2022; 27(8): 2494. https://doi.org/10.3390/molecules27082494
53. Shamsudin N.F. et al. Antibacterial Effects of Flavonoids and Their Structure-Activity Relationship Study: A Comparative Interpretation. Molecules. 2022; 27(4): 1149. https://doi.org/10.3390/molecules27041149
54. Kim D., Kuppusamy P., Jung J.S., Kim K.H., Choi K.C. Microbial Dynamics and In Vitro Degradation of Plant Secondary Metabolites in Hanwoo Steer Rumen Fluids. Animals. 2021; 11(8): 2350. https://doi.org/10.3390/ani11082350
55. Phale P.S., Malhotra H., Shah B.A. Degradation strategies and associated regulatory mechanisms/features for aromatic compound metabolism in bacteria. Advances in Applied Microbiology. 2020; 112: 1–65. https://doi.org/10.1016/bs.aambs.2020.02.002
56. Vasconcelos N.G., Croda J., Simionatto S. Antibacterial mechanisms of cinnamon and its constituents: A review. Microbial Pathogenesis. 2018; 120: 198–203. https://doi.org/10.1016/j.micpath.2018.04.036
57. Lai T., Sun Y., Liu Y., Li R., Chen Y., Zhou T. Cinnamon Oil Inhibits Penicillium expansum Growth by Disturbing the Carbohydrate Metabolic Process. Journal of Fungi. 2021; 7(2): 123. https://doi.org/10.3390/jof7020123
58. Slikkerveer A., de Wolff F.A. Toxicity of Bismuth and Its Compounds. Chang L.W. (ed.). Toxicology of Metals. Boca Raton: CRC Press. 1996; 1: 439–454. https://doi.org/10.1201/9781003418917-39
59. Zhao Z. et al. Pathway for biodegrading coumarin by a newly isolated Pseudomonas sp. USTB-Z. World Journal of Microbiology and Biotechnology. 2021; 37: 89. https://doi.org/10.1007/s11274-021-03055-w
60. Atlanderova K.N., Vlasenko L.V., Duskaev G.K. Assessment of the “Biovit” and cinnamaldehyde effect on the degree of feed digestability and the cattle rumen microbiome. Proceedings of the Kuban State Agrarian University. 2024; 112: 201–207 (in Russian). https://elibrary.ru/enbrhl
61. Vlasenko L.V., Atlanderova K.N., Duskaev G.K. Analysis of the microbiome of the rumen of cattle and the degree of digestibility of feed under the influence of umbelliferone. Veterinaria i kormlenie. 2024; (5): 19–21 (in Russian). https://doi.org/10.30917/ATT-VK-1814-9588-2024-5-4
Review
For citations:
Atlanderova K.N., Shoshin D.E., Kazaev K.A. Dynamics of extraction of minerals from the feed substrate in vitro with including low molecular weight additives into rumen reaction medium. Agrarian science. 2025;(3):47-61. (In Russ.) https://doi.org/10.32634/0869-8155-2025-392-03-47-61