Modern methods and tools for assessing the problematic behavior of companion dogs: an analytical review
https://doi.org/10.32634/0869-8155-2025-399-10-58-70
Abstract
The need to develop and apply comprehensive methods for analyzing the behavior of companion dogs is associated with the possibility of early detection of behavioral signs of decreased well-being. Conducting surveys and retrospective data analysis may show insufficient accuracy. Visual observation by a person in the process of analyzing behavior is accompanied by high labor intensity and the probability of error due to the subjectivity of perception. From this perspective, the use of video recordings, sensors of motor activity, and the use of neural networks for data analysis can provide more valid information. The analysis revealed a weak understanding in the Russian literature of the possibility of using artificial intelligence technology in the analysis of animal behavior. In this regard, this review highlights the issue of using accelerometry and computer vision systems to analyze the level of motor activity in dogs. The identification of behavioral patterns and their dynamics in a given time interval can be used to assess the psychoemotional state, the level of anxiety and stress, the characteristics of interaction with humans, other animals and behavior in different situations. It can be assumed that this comprehensive approach will create an opportunity for the objective identification of dogs with behavioral disorders. Together with the analysis of vocalizations, this can provide more accurate and detailed information about the communication of dogs, their psycho-emotional state, and also contribute to the early detection of problems.
About the Authors
A. S. FominaRussian Federation
Anna Sergeevna Fomina - Candidate of Biological Sciences, Associate Professor,
1 Gagarin Square, Rostov-on-Don, 344003
P. V. Vasiliev
Russian Federation
Pavel Vladimirovich Vasiliev - Candidate of Technical Sciences,
1 Gagarin Square, Rostov-on-Don, 344003
A. A. Krikunova
Russian Federation
Anastasia Anatolyevna Krikunova - applicant,
1 Gagarin Square, Rostov-on-Don, 344003
A. M. Ermakov
Russian Federation
Alexey Mikhailovich Ermakov - Doctor of Biological Sciences, Professor,
1 Gagarin Square, Rostov-on-Don, 344003
References
1. Kasnesis P. et al. Deep Learning Empowered Wearable-Based Behavior Recognition for Search and Rescue Dogs. Sensors. 2022; 22(3): 993. https://doi.org/10.3390/s22030993
2. Atif O., Lee J., Park D., Chung Y. Behavior-Based Video Summarization System for Dog Health and Welfare Monitoring. Sensors. 2023; 23(6): 2892. https://doi.org/10.3390/s23062892
3. Aguilar-Lazcano C.A., Espinosa-Curiel I.E., Ríos-Martínez J.A., Madera-Ramírez F.A., Pérez-Espinosa H. Machine Learning-Based Sensor Data Fusion for Animal Monitoring: Scoping Review. Sensors. 2023; 23(12): 5732. https://doi.org/10.3390/s23125732
4. Aich S., Chakraborty S., Sim J.-S., Jang D.-J., Kim H.-C. The Design of an Automated System for the Analysis of the Activity and Emotional Patterns of Dogs with Wearable Sensors Using Machine Learning. Applied Sciences. 2019; 9(22): 4938. https://doi.org/10.3390/app9224938
5. Vehkaoja A. et al. Description of movement sensor dataset for dog behavior classification. Data in Brief. 2022; 40: 107822. https://doi.org/10.1016/j.dib.2022.107822
6. Fux A. et al. Objective Video-Based Assessment of ADHD-Like Canine Behavior Using Machine Learning. Animals. 2021; 11(10): 2806. https://doi.org/10.3390/ani11102806
7. Mariti C., Raspanti E., Zilocchi M., Carlone B. Gazzano A. The assessment of dog welfare in the waiting room of a veterinary clinic. Animal Welfare. 2015; 24(3): 299–305. https://doi.org/10.7120/09627286.24.3.299
8. Helsly M., Priymenko N., Girault C., Duranton C., Gaunet F. Dog behaviours in veterinary consultations: Part II. The relationship between the behaviours of dogs and their owners. The Veterinary Journal. 2022; 281: 105789. https://doi.org/10.1016/j.tvjl.2022.105789
9. Kim Y., Sa J., Chung Y., Park D., Lee S. Resource-Efficient Pet Dog Sound Events Classification Using LSTM-FCN Based on Time-Series Data. Sensors. 2018; 18(11): 4019. https://doi.org/10.3390/s18114019
10. Пеньков Д.Я., Новопашина С.И., Санников М.Ю. Определение поисковых способностей собак служебных пород в разные возрастные периоды. Сборник научных трудов Ставропольского научно-исследовательского института животноводства и кормопроизводства. 2010; 3(1): 47‒49. https://elibrary.ru/nwavud
11. Ивонина О.Ю., Маркелова И.Н. Тестирование собак породы американский стаффордширский терьер по поведению для допуска к племенному разведению. Вестник ИрГСХА. 2016; 76: 129‒137. https://elibrary.ru/wzzjcl
12. Семенихина О.Н., Матвеенко Е.С. Коррекция поведения собак. Иппология и ветеринария. 2013; (4): 101‒104. https://elibrary.ru/ruxglr
13. Ефимова Н.А. Выявление типа темперамента собаки и его влияние на ее обучаемость и дрессируемость. Наука и социум. Мате¬ риалы Всероссийской научно-практической конференции с международным участием. Новосибирск: Сибирский институт практической психологии, педагогики и социальной работы. 2017; 53‒55. https://elibrary.ru/ygnmdl
14. Алтухов Б.Н., Мистюкова О.Н., Фоминок А.А. Особенности агрессивного поведения собак. Ветеринарно-санитарные аспекты качества и безопасности сельскохозяйственной продукции. Материалы V Международной научно-практической конференции. Воронеж: Воронежский государственный аграрный университет им. императора Петра I. 2021; 1: 18‒25. https://elibrary.ru/suawva
15. Савичева С.В. Коррекция поведения собак. Иппология и ветеринария. 2013; (2): 49‒52. https://elibrary.ru/rbpdzd
16. Борина П.И., Сунцова Е.Н. Зоопсихология — социальное поведение собак. Научные труды студентов Ижевской ГСХА. 2019; (1): 205‒209. https://elibrary.ru/bgauxj
17. Бутова А.А. Асоциальные собаки: социализация и снижение влияния стресс-факторов при ветеринарных манипуляциях. Ученые записки Казанской государственной академии ветеринарной медицины им. Н.Э. Баумана. 2021; 247: 27‒33. https://elibrary.ru/rfaknf
18. Гончарова Д.А., Слесаренко Н.А. Корреляционная зависимость поведенческих отклонений с типом латерализации у Canis lupus familiaris. Неделя студенческой науки. Материалы Всероссийской студенческой научно-практической конференции. М.: Московская государственная академия ветеринарной медицины и биотехнологии — МВА им. К.И. Скрябина. 2022; 371‒373. https://elibrary.ru/zynzqc
19. Lit L., Schweitzer J.B., Iosif A.-M., Oberbauer A.M. Owner reports of attention, activity, and impulsivity in dogs: a replication study. Behavioral and Brain Functions. 2010; 6: 1. https://doi.org/10.1186/1744-9081-6-1
20. Wright H.F., Mills D.S., Pollux P.M. Behavioural and physiological correlates of impulsivity in the domestic dog (Canis familiaris). Physiology & Behavior. 2012; 105(3): 676‒682. https://doi.org/10.1016/j.physbeh.2011.09.019
21. Puurunen J. et al. A non-targeted metabolite profiling pilot study suggests that tryptophan and lipid metabolisms are linked with ADHDlike behaviours in dogs. Behavioral and Brain Functions. 2016; 12: 27. https://doi.org/10.1186/s12993-016-0112-1
22. Masson S., Gaultier E. Retrospecive study on hypersensitivityhyperactivity syndrome in dogs: long-term outcome of high dose fluoxetine treatment and proposal of a clinical score. Dog Behavior. 2018; 4(2): 15–32. https://doi.org/10.4454/db.v4i2.79
23. Bleuer-Elsner S. et al. Computational Analysis of Movement Patterns of Dogs with ADHD-Like Behavior. Animals. 2019; 9(12): 1140. https://doi.org/10.3390/ani9121140
24. Bunford N., Csibra B., Peták C., Ferdinandy B., Miklósi Á., Gácsi M. Associations among behavioral inhibition and owner-rated attention, hyperactivity/impulsivity, and personality in the domestic dog (Canis familiaris). Journal of Comparative Psychology. 2019; 133(2): 233‒243. https://doi.org/10.1037/com0000151
25. Dinwoodie I.R., Dwyer B., Zottol V., Gleason D., Dodman N.H. Demographics and comorbidity of behavior problems in dogs. Journal of Veterinary Behavior. 2019; 32: 62‒71. https://doi.org/10.1016/j.jveb.2019.04.007
26. Salonen M., Mikkola S., Hakanen E., Sulkama S., Puurunen J., Lohi H. Personality traits associate with behavioral problems in pet dogs. Translational Psychiatry. 2022; 12: 78. https://doi.org/10.1038/s41398-022-01841-0
27. Salonen M., Mikkola S., Hakanen E., Sulkama S., Puurunen J., Lohi H. Reliability and Validity of a Dog Personality and Unwanted Behavior Survey. Animals. 2021; 11(5): 1234. https://doi.org/10.3390/ani11051234
28. Salonen M. et al. Prevalence, comorbidity, and breed differences in canine anxiety in 13,700 Finnish pet dogs. Scientific Reports. 2020; 10: 2962. https://doi.org/10.1038/s41598-020-59837-z
29. Mikkola S. et al. Aggressive behaviour is affected by demographic, environmental and behavioural factors in purebred dogs. Scientific Reports. 2021; 11: 9433. https://doi.org/10.1038/s41598-021-88793-5
30. Powell L., Duffy D.L., Kruger K.A., Watson B., Serpell J.A. Relinquishing Owners Underestimate Their Dog’s Behavioral Problems: Deception or Lack of Knowledge?. Frontiers in Veterinary Science. 2021; 8: 734973. https://doi.org/10.3389/fvets.2021.734973
31. Gáll Z., Székely O. Role of Vitamin D in Cognitive Dysfunction: New Molecular Concepts and Discrepancies between Animal and Human Findings. Nutrients. 2021; 13(11): 3672. https://doi.org/10.3390/nu13113672
32. Авилов А.В., Фомина А.С., Крикунова А.А., Ермаков А.М. Методика классификации вокализации собак как маркера тревожного или агрессивного поведения. Ветеринария Кубани. 2022; (3): 35‒37. https://elibrary.ru/cwjbsn
33. Авилов А.В., Фомина А.С., Скубак П.Г., Крахмалев Т.К., Ермаков А.М. Разработка устройства для оценки эмоционального состояния собак-компаньонов на основе анализа вокализаций при тревожности и лае. Ветеринарная патология. 2023; 22(3): 32‒44. https://doi.org/10.23947/2949-4826-2023-22-3-32-44
34. Rodriguez K.E., Herzog H., Gee N.R. Variability in Human-Animal Interaction Research. Frontiers in Veterinary Science. 2021; 7: 619600 https://doi.org/10.3389/fvets.2020.619600
35. Фомина А.С., Васильев П.В., Долгов В.В., Крикунова А.А., Ермаков А.М. Новый подход к комплексной оценке проблемного поведения собак-компаньонов. Сообщение 1. Международный вестник ветеринарии. 2025; (1): 424‒436. https://doi.org/10.52419/issn2072-2419.2025.1.424
36. Фомина А.С. и др. Проблемное поведение собак-компаньонов: важно для человека, важно для общества. Российский психологический журнал. 2024; 21(4): 45‒78. https://doi.org/10.21702/3k5pk670
37. Tiira K., Lohi H. Reliability and validity of a questionnaire survey in canine anxiety research. Applied Animal Behaviour Science. 2014; 155: 82–92. https://doi.org10.1016/j.applanim.2014.03.007
38. Tiira K., Sulkama S., Lohi H. Prevalence, comorbidity, and behavioral variation in canine anxiety. Journal of Veterinary Behavior. 2016; 16: 36‒44. https://doi.org/10.1016/j.jveb.2016.06.008
39. Westgarth C., Brooke M., Christley R.M. How many people have been bitten by dogs? A cross-sectional survey of prevalence, incidence and factors associated with dog bites in a UK community. Journal of Epidemiology & Community Health. 2018; 72(4): 331‒336. https://doi.org/10.1136/jech-2017-209330
40. Bowen J., García E., Darder P., Argüelles J., Fatjó J. The effects of the Spanish COVID-19 lockdown on people, their pets, and the human-animal bond. Journal of Veterinary Behavior. 2020; 40: 75‒91. https://doi.org/10.1016/j.jveb.2020.05.013
41. Katica M. et al. Interdisciplinary aspects of possible negative effects of dogs on humans in Bosnia and Herzegovina. Medicinski glasnik. 2020; 17(2): 246‒251. https://doi.org/10.17392/1187-20
42. Degeling C., Hall J., van Eeden L.M., Finlay S.M., Gurung S.M., Brookes V.J. Representations of Free-Living and Unrestrained Dogs as an Emerging Public Health Issue in Australian Newspapers. International Journal of Environmental Research and Public Health. 2021; 18(11): 5807. https://doi.org/10.3390/ijerph18115807
43. Gobbo E., Zupan M. Dogs’ Sociability, Owners’ Neuroticism and Attachment Style to Pets as Predictors of Dog Aggression. Animals. 2020; 10(2): 315. https://doi.org/10.3390/ani10020315
44. Parente G. et al. Consequences of COVID-19 Lockdown on Children and Their Pets: Dangerous Increase of Dog Bites among the Paediatric Population. Children. 2021; 8(8): 620. https://doi.org/10.3390/children8080620
45. Stubsjøen S.M., Moe R.O., Johannessen C., Larsen M., Madsen H., Muri K. Can shelter dog observers score behavioural expressions consistently over time? Acta Veterinaria Scandinavica. 2022; 64: 35. https://doi.org/10.1186/s13028-022-00654-x
46. Franzini de Souza C.C., Dias D.P.M., de Souza R.N., de Medeiros M.A. Use of behavioural and physiological responses for scoring sound sensitivity in dogs. PLoS ONE. 2018; 13(8): e0200618. https://doi.org/10.1371/journal.pone.0200618
47. Gähwiler S., Bremhorst A., Tóth K., Riemer S. Fear expressions of dogs during New Year fireworks: a video analysis. Scientific Reports. 2020; 10: 16035. https://doi.org/10.1038/s41598-020-72841-7
48. Scaglia E., Cannas S., Minero M., Frank D., Bassi A., Palestrini C. Video analysis of adult dogs when left home alone. Journal of Veterinary Behavior. 2013; 8(6): 412‒417. https://doi.org/10.1016/j.jveb.2013.04.065
49. Gruen M.E. et al. The use of an open-field model to assess soundinduced fear and anxiety-associated behaviors in Labrador retrievers. Journal of Veterinary Behavior. 2015; 10(4): 338‒345. https://doi.org/10.1016/j.jveb.2015.03.007
50. Fish R.E., Foster M.L., Gruen M.E., Sherman B.L., Dorman D.C. Effect of Wearing a Telemetry Jacket on Behavioral and Physiologic Parameters of Dogs in the Open-Field Test. Journal of the American Association for Laboratory Animal Science. 2017; 56(4): 382‒389.
51. Dalley J.W., Roiser J.P. Dopamine, serotonin and impulsivity. Neuroscience. 2012; 215: 42‒58. https://doi.org/10.1016/j.neuroscience.2012.03.065
52. Bremhorst A., Sutter N.A., Würbel H., Mills D.S., Riemer S. Differences in facial expressions during positive anticipation and frustration in dogs awaiting a reward. Scientific Reports. 2019; 9: 19312. https://doi.org/10.1038/s41598-019-55714-6
53. Magula L., Moxley K., Lachman A. Iron deficiency in South African children and adolescents with attention deficit hyperactivity disorder. Journal of Child & Adolescent Mental Health. 2019; 31(2): 85‒92. https://doi.org/10.2989/17280583.2019.1637345
54. Barnard S. et al. Quick, Accurate, Smart: 3D Computer Vision Technology Helps Assessing Confined Animals’ Behaviour. PLoS ONE. 2016; 11(7): e0158748. https://doi.org/10.1371/journal.pone.0158748
55. Rowlison de Ortiz A., Belda B., Hash J., Enomoto M., Robertson J., Lascelles B.D.X. Initial exploration of the discriminatory ability of the PetPace collar to detect differences in activity and physiological variables between healthy and osteoarthritic dogs. Frontiers in Pain Research. 2022; 3: 949877. https://doi.org/10.3389/fpain.2022.949877
56. den Uijl I., Gómez Álvarez C.B., Bartram D., Dror Y., Holland R., Cook A. External validation of a collar-mounted triaxial accelerometer for second-by-second monitoring of eight behavioural states in dogs. PLoS ONE. 2017; 12(11): e0188481. https://doi.org/10.1371/journal.pone.0188481
57. Li M.F., Nagendran L., Schroeder L., Samson D.R. The activity patterns of nonworking and working sled dogs. Scientific Reports. 2022; 12: 7999. https://doi.org/10.1038/s41598-022-11635-5
58. Bruno E.A., Guthrie J.W., Ellwood S.A., Mellanby R.J., Clements D.N. Global Positioning System Derived Performance Measures Are Responsive Indicators of Physical Activity, Disease and the Success of Clinical Treatments in Domestic Dogs. PLoS ONE. 2015; 10(2): e0117094. https://doi.org/10.1371/journal.pone.0117094
59. Chambers R.D. et al. Deep Learning Classification of Canine Behavior Using a Single Collar-Mounted Accelerometer: Real-World Validation. Animals. 2021; 11(6):1549. https://doi.org/10.3390/ani11061549
60. Kikusui T. et al. Beacon-based sleep-wake monitoring in dogs. Journal of Veterinary Medical Science. 2024; 86(6): 631‒635. https://doi.org/10.1292/jvms.23-0472
61. Foster M., Wu T., Roberts D.L., Bozkurt A. Preliminary Evaluation of a System with On-Body and Aerial Sensors for Monitoring Working Dogs. Sensors. 2022; 22(19): 7631. https://doi.org/10.3390/s22197631
62. Martin K.W., Olsen A.M., Duncan C.G., Duerr F.M. The method of attachment influences accelerometer-based activity data in dogs. BMC Veterinary Research. 2017; 13: 48. https://doi.org/10.1186/s12917-017-0971-1
63. Gerencsér L., Vásárhelyi G., Nagy M., Vicsek T., Miklósi A. Identification of Behaviour in Freely Moving Dogs (Canis familiaris) Using Inertial Sensors. PLoS ONE. 2013; 8(10): e77814. https://doi.org/10.1371/journal.pone.0077814
64. Wernimont S.M., Thompson R.J., Mickelsen S.L., Smith S.C., Alvarenga I.C., Gross K.L. Use of Accelerometer Activity Monitors to Detect Changes in Pruritic Behaviors: Interim Clinical Data on 6 Dogs. Sensors. 2018; 18(1): 249. https://doi.org/10.3390/s18010249
65. Ren W., Wei P., Yu S., Zhang Y.Q. Left-right asymmetry and attractor-like dynamics of dog’s tail wagging during dog-human interactions. iScience. 2022; 25(8): 104747. https://doi.org/10.1016/j.isci.2022.104747
66. Völter C.J., Starić D., Huber L. Using machine learning to track dogs’ exploratory behaviour in the presence and absence of their caregiver. Animal Behaviour. 2023; 197: 97‒111. https://doi.org/10.1016/j.anbehav.2023.01.004
67. Wan L., Ge W.-R., Zhang S., Sun Y.-L., Wang B., Yang G. Case-Control Study of the Effects of Gut Microbiota Composition on Neurotransmitter Metabolic Pathways in Children With Attention Deficit Hyperactivity Disorder. Frontiers in Neuroscience. 2020; 14: 127. https://doi.org/10.3389/fnins.2020.00127
68. Karl S. et al. Exploring the dog-human relationship by combining fMRI, eye-tracking and behavioural measures. Scientific Reports. 2020; 10: 22273. https://doi.org/10.1038/s41598-020-79247-5
69. Владимиров Ф.Е., Базаев С.О., Хакимов А.Р., Юрочка С.С. Оценка поведенческих реакций у крупного рогатого скота. Аграрная наука. 2024; (1): 75–80. https://doi.org/10.32634/0869-8155-2024-378-1-75-80
Review
For citations:
Fomina A.S., Vasiliev P.V., Krikunova A.A., Ermakov A.M. Modern methods and tools for assessing the problematic behavior of companion dogs: an analytical review. Agrarian science. 2025;(10):58-70. (In Russ.) https://doi.org/10.32634/0869-8155-2025-399-10-58-70



































