Definition of the species Escherichia coli: problems of taxonomy and phylogeny
https://doi.org/10.32634/0869-8155-2025-401-12-22-27
Abstract
Escherichia coli is a component of the normal intestinal microbiota of humans and animals. Phenotypic and genotypic characteristics allow the identification of pathogenic E. coli strains. Numerous pathotypes, representing groups of strainswith specific pathogenic characteristics, have been described based on heterogeneous criteria. The use of whole-genome sequencing has led to the accumulation of genomic data that enable a population-phylogenetic approach to the emergence of virulence, thus allowing E. coli to be further classified into phylogenetic groups. An analysis of the literature data revealed that non-pathogenic E. coli living in the gastrointestinal tract of animals belong to group A, commensal and some pathogenic strains belong to group B1, InPEC belong to groups D1, D2 and E, most ExPEC belong to group B2, and strains that are phenotypically indistinguishable and genetically diverse, belong to Clade I. Emerging multidrug-resistant E. coli strains are more difficult to treat and pose a higher risk of bacteremia. Effective prevention and treatment of E. coli infections requires distinguishing between strains (pathotypes, phylogenetic groups) of the microorganism that cause disease in animals and strains that infect humans through the food chain, as animals serve as their reservoir. The development and implementation of effective preventive strategies requires a better understanding of the current taxonomy of the pathogen, as well as tracing its genomic evolution to generate fundamental knowledge for the development of not only effective vaccines but also new therapeutics to combat this diverse group of pathogens within the framework of a One Health approach.
About the Authors
A. N. PaninRussian Federation
Alexander Nikolaevich Panin, Doctor of Veterinary Sciences, Professor, Academician of the Russian Academy of Sciences, Advisor
5 Zvenigorodskoe highway, Moscow, 123022
A. V. Motorygin
Russian Federation
Anton Valerievich Motorygin, Candidate of Veterinary Sciences, Head of the Scientific and Technological Laboratory
5 Zvenigorodskoe highway, Moscow, 123022
N. S. Abrosimova
Russian Federation
Nadezhda Sergeevna Abrosimova, Senior Researcher at the Scientific and Technological Laboratory
5 Zvenigorodskoe highway, Moscow, 123022
Z. Kh. Mezhieva
Russian Federation
Zarina Khamzatovna Mezhieva, Candidate of Veterinary Sciences, Chief Specialist of the Department of Bacteriology
5 Zvenigorodskoe highway, Moscow, 123022
O. V. Prasolova
Russian Federation
Olga Vladimirovna Prasolova, Doctor of Veterinary Sciences, Senior Researcher at the Department of Molecular Biology
5 Zvenigorodskoe highway, Moscow, 123022
M. G. Manoyan
Russian Federation
Marina Gevorkovna Manoyan, Candidate of Veterinary Sciences, Head of the Department of Mycology
5 Zvenigorodskoe highway, Moscow, 123022
References
1. Escherich T. The intestinal bacteria of the newborn and infant. Advances in Medicine. 1885; 3(16–17): 515–522 (in German).
2. Koser S.A. Utilization of the salts of organic acids by the colonaerogenes group. Journal of Bacteriology. 1923; 8(5): 493–520. https://doi.org/10.1128/jb.8.5.493-520.1923
3. Kauffmann F. On the serology of the E. coli group. Acta Pathologica Microbiologica Scandinavica. 1944; 21(1): 20–45 (in German). https://doi.org/10.1111/j.1699-0463.1944.tb00031.x
4. Marmur J., Seaman E., Levine J. Interspecific transformation in Bacillus. Journal of Bacteriology. 1963; 85(2): 461–467. https://doi.org/10.1128/jb.85.2.461-467.1963
5. Brenner D.J., Fanning G.R., Skerman F.J., Falkow S. Polynucleotide sequence divergence among strains of Escherichia coli and closely related organisms. Journal of Bacteriology. 1972; 109(3): 953–965. https://doi.org/10.1128/jb.109.3.953-965.1972
6. Tindall B.J., Rosselló-Móra R., Busse H.-J., Ludwig W., Kämpfer P. Notes on the characterization of prokaryote strains for taxonomic purposes. International Journal of Systematic and Evolutionary Microbiology. 2010; 60(1): 249–266. https://doi.org/10.1099/ijs.0.016949-0
7. Yarza P. et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nature Reviews Microbiology. 2014; 12(9): 635–645. https://doi.org/10.1038/nrmicro3330
8. Edgar R.C. Accuracy of taxonomy prediction for 16S rRNA and fungal ITS sequences. PeerJ. 2018; 6: e4652. https://doi.org/10.7717/peerj.4652
9. Konstantinidis K.T., Tiedje J.M. Genomic insights that advance the species definition for prokaryotes. Proceedings of the National Academy of Sciences. 2005; 102(7): 2567–2572. https://doi.org/10.1073/pnas.0409727102
10. Jain C., Rodriguez-R L.M., Phillippy A.M., Konstantinidis K.T., Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nature Communications. 2018; 9: 5114. https://doi.org/10.1038/s41467-018-07641-9
11. Parks D.H. et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nature Biotechnology. 2018; 36(10): 996–1004. https://doi.org/10.1038/nbt.4229
12. Parks D.H., Chuvochina M., Reeves P.R., Beatson S.A., Hugenholtz P. Reclassification of Shigella species as later heterotypic synonyms of Escherichia coli in the Genome Taxonomy Database. BioRxiv. 2021; 15. https://doi.org/10.1101/2021.09.22.461432
13. Brenner D.J., Fanning G.R., Miklos G.V., Steigerwalt A.G. Polynucleotide sequence relatedness among Shigella species. International Journal of Systematic and Evolutionary Microbiology. 1973; 23(1): 1–7. https://doi.org/10.1099/00207713-23-1-1
14. Ochman H., Whittam T.S., Caugant D.A., Selander R.K. Enzyme polymorphism and genetic population structure in Escherichia coli and Shigella. Journal of General Microbiology. 1983; 129(9): 2715–2726. https://doi.org/10.1099/00221287-129-9-2715
15. Pupo G.M., Lan R., Reeves P.R. Multiple independent origins of Shigella clones of Escherichia coli and convergent evolution of many of their characteristics. Proceedings of the National Academy of Sciences. 2000; 97(19): 10567–10572. https://doi.org/10.1073/pnas.180094797
16. Lan R., Reeves P.R. Escherichia coli in disguise: molecular origins of Shigella. Microbes and Infection. 2002; 4(11): 1125–1132. https://doi.org/10.1016/S1286-4579(02)01637-4
17. Jang J., Hur H.-G., Sadowsky M.J., Byappanahalli M.N., Yan T., Ishii S. Environmental Escherichia coli: ecology and public health implications — a review. Journal of Applied Microbiology. 2017; 123(3): 570–581. https://doi.org/10.1111/jam.13468
18. Van Dijk W.C., Verbrugh H.A., van der Tol M.E., Peters R., Verhoef J. Role of Escherichia coli K capsular antigens during complement activation, C3 fixation, and opsonization. Infection and Immunity. 1979; 25(2): 603–609. https://doi.org/10.1128/iai.25.2.603-609.1979
19. Ramos S. et al. Escherichia coli Commensal and Pathogenic Bacteria among Food-Producing Animals: Health Implications of Extended Spectrum β-Lactamase (ESBL) Production. Animals. 2020; 10(12): 2239. https://doi.org/10.3390/ani10122239
20. Croxen M.A., Law R.J., Scholz R., Keeney K.M., Wlodarska M., Finlay B.B. Recent advances in understanding enteric pathogenic Escherichia coli. Clinical Microbiology Reviews. 2013; 26(4): 822–880. https://doi.org/10.1128/cmr.00022-13
21. Etcheverría A.I., Lucchesi P.M.A., Krüger A., Bentancor A.B., Padola N.L. Escherichia coli in Animals. Torres A. (ed.). Escherichia coli in the Americas. Cham: Springer. 2016; 149–172. https://doi.org/10.1007/978-3-319-45092-6_7
22. Pakbin B., Brück W.M., Rossen J.W.A. Virulence Factors of Enteric Pathogenic Escherichia coli: A Review. International Journal of Molecular Sciences. 2021; 22(18): 9922. https://doi.org/10.3390/ijms22189922
23. Nasrollahian S., Graham J.P., Halaji M. A review of the mechanisms that confer antibiotic resistance in pathotypes of E. coli. Frontiers in Cellular and Infection Microbiology. 2024; 14: 1387497. https://doi.org/10.3389/fcimb.2024.1387497
24. Livermore D.M. Bacterial resistance: origins, epidemiology, and impact. Clinical Infectious Diseases. 2003; 36(S1): S11–S23. https://doi.org/10.1086/344654
25. Lerminiaux N.A., Cameron A.D. Horizontal transfer of antibiotic resistance genes in clinical environments. Canadian Journal of Microbiology. 2019; 65(1): 34–44. https://doi.org/10.1139/cjm-2018-0275
26. Coura F.M. et al. Detection of virulence genes and the phylogenetic groups of Escherichia coli isolated from dogs in Brazil. Ciência Rural. 2018; 48(2): e20170478. https://doi.org/10.1590/0103-8478cr20170478
27. Chakraborty A., Saralaya V., Adhikari P., Shenoy S., Baliga S., Hegde A. Characterization of Escherichia coli phylogenetic groups associated with extraintestinal infections in South Indian population. Annals of Medical and Health Sciences Research. 2015; 5(4): 241–246.
28. Hrala M. et al. Extraintestinal Escherichia coli from camel carcasses: Phylogroups, serotypes, and markers of virulence. PLOS One. 2025; 20(10): e0334045. https://doi.org/10.1371/journal.pone.0334045
29. Abul Y., Engin C., Öztürk M.C., Kekeç A.I., Nowakiewicz A., Bağcigil A.F. First study on Escherichia coli isolates from Free-Ranging red deer in a natural park in Türkiye. European Journal of Wildlife Research. 2025; 71(5): 102. https://doi.org/10.1007/s10344-025-01986-5
30. Holzer K., Marongiu L., Detert K., Venturelli S., Schmidt H., Hoelzle L.E. Phage applications for biocontrol of enterohemorrhagic E. coli O157:H7 and other Shiga toxin-producing Escherichia coli. International Journal of Food Microbiology. 2025; 439: 111267. https://doi.org/10.1016/j.ijfoodmicro.2025.111267
31. van Hoek A.H.A.M. et al. Virulence and antimicrobial resistance of Shiga toxin-producing Escherichia coli from dairy goat and sheep farms in the Netherlands. Journal of Applied Microbiology. 2023; 134(6): lxad119. https://doi.org/10.1093/jambio/lxad119
32. Alhadlaq M.A. et al. Overview of pathogenic Escherichia coli, with a focus on Shiga toxin-producing serotypes, global outbreaks (1982– 2024) and food safety criteria. Gut Pathogens. 2024; 16: 57. https://doi.org/10.1186/s13099-024-00641-9
33. O’Connell L.M., Coffey A., O’Mahony J.M. Alternatives to antibiotics in veterinary medicine: considerations for the management of Johne’s disease. Animal Health Research Reviews. 2023, 24(1): 12–27. https://doi.org/10.1017/S146625232300004X
34. Denamur E., Clermont O., Bonacorsi S., Gordon D. The population genetics of pathogenic Escherichia coli. Nature Reviews Microbiology. 2021; 19(1): 37–54. https://doi.org/10.1038/s41579-020-0416-x
35. Croxen M.A., Finlay B.B. Molecular mechanisms of Escherichia coli pathogenicity. Nature Reviews Microbiology. 2010; 8(1): 26–38. https://doi.org/10.1038/nrmicro2265
36. Gulyukin A.M., Kapustin A.V., Mishchenko A.V. Antibiotic resistance as a factor hindering the fight against infectious diseases of animals. Herald of the Russian Academy of Sciences. 2024; (1): 19–24 (in Russian). https://doi.org/10.31857/S0869587324010049
37. Piradov M.A. Antibiotic resistance is one of the global challenges to humanity. Herald of the Russian Academy of Sciences. 2025; (4): 22–24 (in Russian). https://doi.org/10.31857/S0869587325040044
38. Olsufyeva E.N., Yankovskaya V.S. Analysis of the Antibiotic Resistance Problem in the Agricultural Sector. Antibiotics and Chemotherapy. 2024; 69(9–10): 108–132 (in Russian). https://doi.org/10.37489/0235-2990-2024-69-9-10-108-132.
39. Gratsianskaya A.N., Teplova N.V., Belousova L.B. New Possibilities for Overcoming Antibiotic Resistance in Bacteria. Antibiotics and Chemotherapy. 2024; 69(11–12): 121–126 (in Russian). https://doi.org/10.37489/0235-2990-2024-69-11-12-121-126
40. Karwowska E. Antibiotic Resistance in the Farming Environment. Applied Sciences (Switzerland). 2024; 14(13): 5776. https://doi.org/10.3390/app14135776
Review
For citations:
Panin A.N., Motorygin A.V., Abrosimova N.S., Mezhieva Z.Kh., Prasolova O.V., Manoyan M.G. Definition of the species Escherichia coli: problems of taxonomy and phylogeny. Agrarian science. 2025;(12):22-27. (In Russ.) https://doi.org/10.32634/0869-8155-2025-401-12-22-27



































