Preview

Agrarian science

Advanced search

Effect of microalgae biomass cultivated under elevated CO2 concentrations on the process of anaerobic digestion of organo-containing waste

https://doi.org/10.32634/0869-8155-2025-401-12-171-178

Abstract

This article presents the results of an experimental study on the anaerobic digestion of Chlorella kessleri microalgae biomass, preliminarily cultivated under elevated COconcentrations. The digestion process was carried out with the addition of food waste and cow manure as an inoculum.

The aim of the work is to determine the optimal ratio of the components of the fermentation mixture (microalgae — food waste — inoculant) for organic carbon for maximum biogas yield and its energy potential (in terms of methane content in biogas).

It was found that the best results (1,018 liters of biogas and 67.3% methane) were achieved with a ratio of 1.0 g — 3.2 g — 4.0 g, while the maximum proportion of methane (67.8%) was recorded with the addition of 1.2 g of microalgae.

The obtained results support the recommendation to use Chlorella kessleri biomass, previously cultivated under elevated COconditions, as an additive in co-anaerobic digestion with food waste and inoculum. This approach is proposed as an energy-efficient, environmentally friendly, and economically viable method to enhance the biogas potential of feedstock mixtures. 

About the Authors

K. A. Velmozhina
Peter the Great St. Petersburg Polytechnic University (SPbPU)
Russian Federation

Ksenia Alekseevna Velmozhina, Engineer

29B Polytechnicheskaya Str., St. Petersburg, 195251
 



P. S. Shinkevich
Peter the Great St. Petersburg Polytechnic University (SPbPU)
Russian Federation

Polina Sergeevna Shinkevich, Еngineer 

29B Polytechnicheskaya Str., St. Petersburg, 195251 



N. A. Politaeva
Peter the Great St. Petersburg Polytechnic University (SPbPU)
Russian Federation

Natalia Anatolyevna Politaeva, Doctor of Technical Sciences, Professor 

29B Polytechnicheskaya Str., St. Petersburg, 195251 



A. N. Chusov
Peter the Great St. Petersburg Polytechnic University (SPbPU)
Russian Federation

Alexander Nikolaevich Chusov, Candidate of Technical Sciences, Associate Professor 

29B Polytechnicheskaya Str., St. Petersburg, 195251 



V. I. Maslikov
Peter the Great St. Petersburg Polytechnic University (SPbPU)
Russian Federation

Vladimir Ivanovich Maslikov, Doctor of Technical Sciences, Professor 

29B Polytechnicheskaya Str., St. Petersburg, 195251 



A. M. Oparina
Peter the Great St. Petersburg Polytechnic University (SPbPU)
Russian Federation

Anna Mikhailovna Oparina, Assistant 

29B Polytechnicheskaya Str., St. Petersburg, 195251 



References

1. Jacobson T.A., Kler J.S., Hernke M.T., Braun R.K., Meyer K.C.,Funk W.E. Direct human health risks of increased atmospheric carbondioxide. Nature Sustainability. 2019; 2(8): 691–701.https://doi.org/10.1038/s41893-019-0323-1

2. Azuma K., Kagi N., Yanagi U., Osawa H. Effects of low-levelinhalation exposure to carbon dioxide in indoor environments: A shortreview on human health and psychomotor performance. EnvironmentInternational. 2018; 121(1): 51–56.https://doi.org/10.1016/j.envint.2018.08.059

3. Shinkevich P.S., Politaeva N.A. Application of microalgae in CCUtechnologies. Rational use of natural resources and processingof technogenic raw materials: fundamental problems of science,materials science, chemistry and biotechnology. Internationalscientific conference. Collection of reports. Belgorod: Belgorod StateTechnological University. 2023; 329–334 (in Russian).https://www.elibrary.ru/dmxjsh

4. Daneshvar E., Wicker R.J., Show P.-L., Bhatnagar A. Biologicallymediated carbon capture and utilization by microalgae towardssustainable CO2 biofixation and biomass valorization — A review.Chemical Engineering Journal. 2021; 427: 130884.https://doi.org/10.1016/j.cej.2021.130884

5. Li S., Chang H., Zhang S., Ho S.-H. Production of sustainablebiofuels from microalgae with CO2 bio-sequestration and life cycleassessment. Environmental Research. 2023; 227: 115730.https://doi.org/10.1016/j.envres.2023.115730

6. Onyeaka H., Miri T., Obileke K., Hart A., Anumudu C., Al-Sharify Z.T.Minimizing carbon footprint via microalgae as a biological capture.Carbon Capture Science & Technology. 2021; 1: 100007.https://doi.org/10.1016/j.ccst.2021.100007

7. Shinkevich P.S., Velmozhina K.A., Politaeva N.A., Chusov A.N.Development of a technological scheme for carbon dioxide utilizationand biohydrogen production using microalgae. International scientificjournal for Alternative energy and ecology. 2024; (10): 154–166(in Russian).https://www.elibrary.ru/cqzywb

8. Zibarev N.V., Politaeva N.A., Molodkina L.M. Production of biodieselfrom microalgae by transesterification of biomass. ButlerovCommunications. 2023; 73(1): 101–108 (in Russian).https://www.elibrary.ru/apbich

9. Velmozhina K. et al. Production of Biohydrogen from MicroalgaeBiomass after Wastewater Treatment and Air Purification from CO2.Processes. 2023; 11(10): 2978.https://doi.org/10.3390/pr11102978

10. Kougias P.G., Angelidaki I. Biogas and its opportunities — A review.Frontiers of Environmental Science & Engineering. 2018; 12(3): 14.https://doi.org/10.1007/s11783-018-1037-8

11. Weiland P. Biogas production: current state and perspectives.Applied Microbiology and Biotechnology. 2010; 85(4): 849–860.https://doi.org/10.1007/s00253-009-2246-7

12. Ngabala F.J., Emmanuel J.K. Potential substrates for biogasproduction through anaerobic digestion–an alternative energy source.Heliyon. 2024; 10(23): e40632.https://doi.org/10.1016/j.heliyon.2024.e40632

13. Atelge M.R. et al. Biogas Production from Organic Waste: RecentProgress and Perspectives. Waste and Biomass Valorization. 2020;11(3): 1019–1040.https://doi.org/10.1007/s12649-018-00546-0

14. González R., Peña D.C., Gómez X. Anaerobic Co-Digestionof Wastes: Reviewing Current Status and Approaches for EnhancingBiogas Production. Applied Sciences. 2022; 12(17): 8884.https://doi.org/10.3390/app12178884

15. Dębowski M. et al. The Effects of Microalgae Biomass CoSubstrate on Biogas Production from the Common Agricultural BiogasPlants Feedstock. Energies. 2020; 13(9): 2186.https://doi.org/10.3390/en13092186

16. Alharbi R.M. Anaerobic co-digestion of cow manure andmicroalgae to increase biogas production: A sustainable bioenergysource. Journal of King Saud University — Science. 2024; 39(9):103380.https://doi.org/10.1016/j.jksus.2024.103380

17. Kusmayadi A. et al. Integration of microalgae cultivation andanaerobic co-digestion with dairy wastewater to enhance bioenergyand biochemicals production. Bioresource Technology. 2023; 376:128858.https://doi.org/10.1016/j.biortech.2023.128858

18. Torres A., Padrino S., Brito A., Díaz L. Biogas production fromanaerobic digestion of solid microalgae residues generated ondifferent processes of microalgae-to-biofuel production. BiomassConversion and Biorefinery. 2023; 13(6): 4659–4672.https://doi.org/10.1007/s13399-021-01898-9

19. Vargas-Estrada L. et al. A Review on Current Trends in BiogasProduction from Microalgae Biomass and Microalgae Waste byAnaerobic Digestion and Co-digestion. BioEnergy Research. 2022;15(1): 77–92.https://doi.org/10.1007/s12155-021-10276-2

20. Vadiveloo A., Matos A.P., Chaudry S., Bahri P.A., Moheimani N.R.Effect of CO2 addition on treating anaerobically digested abattoireffluent (ADAE) using Chlorella sp. (Trebouxiophyceae). Journalof CO2 Utilization. 2020; 38: 273–281.https://doi.org/10.1016/j.jcou.2020.02.006

21. Sánchez-Quintero Á. et al. Effects of CO2 and liquid digestateconcentrations on the growth performance and biomass compositionof Tetradesmus obliquus and Chlorella vulgaris microalgal strains.Frontiers in Bioengineering and Biotechnology. 2024; 12: 1459756.https://doi.org/10.3389/fbioe.2024.1459756

22. Politaeva N., Ilin I., Velmozhina K., Shinkevich P. Carbon DioxideUtilization Using Chlorella Microalgae. Environments. 2023; 10(7): 109.https://doi.org/10.3390/environments10070109

23. Velmozhina K.A. Improving the technology of anaerobic digestionof organic waste for energy purposes. Master’s thesis. St. Petersburg,2023 (in Russian). https://doi.org/10.18720/SPBPU/3/2023/vr/vr23-2591

24. Chusov A., Maslikov V., Badenko V., Zhazhkov V., Molodtsov D.,Pavlushkina Y. Biogas Potential Assessment of the Composite Mixturefrom Duckweed Biomass. Sustainability. 2022; 14(1): 351.https://doi.org/10.3390/su14010351

25. Magdalena J.A., Ballesteros M., González-Fernandez C. EfficientAnaerobic Digestion of Microalgae Biomass: Proteins as a KeyMacromolecule. Molecules. 2018; 23(5): 1098.https://doi.org/10.3390/molecules23051098

26. Herrmann C., Kalita N., Wall D., Xia A., Murphy J.D. Optimisedbiogas production from microalgae through co-digestion with carbonrich co-substrates. Bioresource Technology. 2016; 214: 328–337.https://doi.org/10.1016/j.biortech.2016.04.119

27. Mahdy A., Fotidis I.A., Mancini E., Ballesteros M., GonzálezFernández C., Angelidaki I. Ammonia tolerant inocula provide a goodbase for anaerobic digestion of microalgae in third generation biogasprocess. Bioresource Technology. 2017; 225: 272–278.https://doi.org/10.1016/j.biortech.2016.11.086

28. Wu N. et al. Techno-Economic Analysis of Biogas Production fromMicroalgae through Anaerobic Digestion. Banu J.R. (ed.). AnaerobicDigestion. IntechOpen. 2019.https://doi.org/10.5772/intechopen.86090

29. Nolla-Ardèvol V., Strous M., Tegetmeyer H. Anaerobic digestionof the microalga Spirulina at extreme alkaline conditions: biogasproduction, metagenome, and metatranscriptome. Frontiersin Microbiology. 2015; 6: 597.https://doi.org/10.3389/fmicb.2015.00597

30. González‐Fernández C., Sialve B., Molinuevo-Salces B. Anaerobicdigestion of microalgal biomass: Challenges, opportunities andresearch needs. Bioresource Technology. 2015; 198: 896–906.https://doi.org/10.1016/j.biortech.2015.09.095

31. Kannah R.Y., Kavitha S., Karthikeyan O.P., Rene E.R., Kumar G.,Banu J.R. A review on anaerobic digestion of energy and costeffective microalgae pretreatment for biogas production. BioresourceTechnology. 2021; 332: 125055.https://doi.org/10.1016/j.biortech.2021.125055

32. Xiao C. et al. Life cycle and economic assessments of biogasproduction from microalgae biomass with hydrothermal pretreatmentvia anaerobic digestion. Renewable Energy. 2020; 151: 70–78.https://doi.org/10.1016/j.renene.2019.10.145

33. Nagarajan D., Lee D.-J., Chang J.-S. Integration of anaerobicdigestion and microalgal cultivation for digestate bioremediation andbiogas upgrading. Bioresource Technology. 2019; 290: 121804.https://doi.org/10.1016/j.biortech.2019.121804


Review

For citations:


Velmozhina K.A., Shinkevich P.S., Politaeva N.A., Chusov A.N., Maslikov V.I., Oparina A.M. Effect of microalgae biomass cultivated under elevated CO2 concentrations on the process of anaerobic digestion of organo-containing waste. Agrarian science. 2025;(12):171-178. (In Russ.) https://doi.org/10.32634/0869-8155-2025-401-12-171-178

Views: 20


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0869-8155 (Print)
ISSN 2686-701X (Online)