Evaluation of the use of silicon and iron nanoform for pre-sowing treatment of Pisum sativum seeds
https://doi.org/10.32634/0869-8155-2022-365-12-81-86
Abstract
Relevance. Modern plant growing technologies are associated with the use of nanoparticles for pre-sowing seed treatment. The article presents the results of studying the effect of pre-sowing treatment of Pisum sativum seeds with solutions of iron and silicon nanooxides on the germination, viability and yield of plants in the conditions of the Southern Ural.
Methods. For pre-sowing treatment of seeds, solutions of nanoparticles of SiO2 and Fe3O4 were used at a concentration of 10–2, 10–3 and 10–4 mg/l, as well as a solution of mixture of two oxides. Cell viability was assessed by the method of Vijayaraghavaraddy, superoxide dismutase activity was determined by Giannopolitis and Ries, catalase, lipid peroxidation and malondialdehyde content – by Heath and Packer, and the fractional composition of proteins in seeds – by Chen.
Results. Determination of the germination of P. sativum showed a significant stimulation of seed germination and an increase in catalase activity when seeds were treated with SiO2 in two concentrations (up to 83 % and 146 %), Fe3O4 (up to 111 %) and Fe3O4 + SiO2 (up to 47 %). A decrease in the content of malonic dialdehyde due to the treatment with SiO2 and its mixture with Fe3O4 (up to 40 %) was noted. Against the background of the use of nanoparticles for pre-sowing seed treatment, the composition of the protein complex changed due to an increase in the pool of albumins by 88 % and a decrease in the content of globulins down to 9,8 %.
About the Authors
L. V. GalaktionovaRussian Federation
Ludmila V. Galaktionova, Candidate of Biological Sciences, Researcher
Laboratory of Agroecology and Soil Science
460000
st. January 9, 29
Orenburg region
Orenburg
A. M. Korotkova
Russian Federation
Anastasia M. Korotkova, Candidate of Biological Sciences, Researcher
Laboratory of Biological Testing and Expertise
460000
st. January 9, 29
Orenburg region
Orenburg
N. A. Terekhova
Russian Federation
Nadezhda A. Terekhova, Graduate student
460018
13 e Pobedy Ave.
Orenburg region
Orenburg
N. I. Voskobulova
Russian Federation
Nadezhda I. Voskobulova, Candidate of Agricultural Sciences, Researcher
Department of Grain and Forage Crops Technologies
460000
st. January 9, 29
Orenburg region
Orenburg
S. V. Lebedev
Russian Federation
Svyatoslav V. Lebedev, Doctor of Biological Sciences, Corresponding Member,
Leading Researcher, Director
460000
st. January 9, 29
Orenburg region
Orenburg
References
1. Davydova N. V., Zamana S. P., Krokhmal I. I., Rezetkin A. M., Romanova E. S., Olkhovskaya I. P., Bogoslovskaya O. A., Yablokov A. G., Glushchenko N. N. Spring wheat indicators in response to seed treatment with metal nanoparticles. Russian nanotechnologies. 2019. Vol. 14. No. 11–12: 64-74. doi: 10.21517/1992-7223-2019-11-12-64-74 (In Russian)
2. Hoe P. T., Mai N. C., Lien L., Ban N., Van M., Chau N. H., Buu N. Q., Hien D. T. Germination responses of soybean seeds under Fe, ZnO, Cu and Co nanoparticle treatments. International Journal of Agriculture and Biology. 2018; 20 (7): 1562–1568. URL: https://www.researchgate.net/publication/326800576_Germination_responses_of_soybean_seeds_under_Fe_ZnO_Cu_and_Co_nanoparticle_treatments
3. Nile S. H., Thiruvengadam M., Wang Y., Samynathan R., Shariati M. A., Rebezov M., Nile A., Sun M., Venkidasamy B., Xiao J., Kai G. Nano-priming as emerging seed priming technology for sustainable agriculture-recent developments and future perspectives. Journal of nanobiotechnology. 2022; 20 (1): 254. doi: 10.1186/s12951-022-01423-8
4. Santo P. A. E., Oliveira H. C., Fraceto L. F., Santaella C. Nanotechnology potential in seed priming for sustainable agriculture. Nanomaterials. 2021; 11: 267. doi: 10.3390/nano11020267
5. Shelar A., Singh A. V., Maharjan R. S., Laux P., Luch A., Gemmati D., Tisato V., Singh S. P., Santilli M. F., Shelar A., Chaskar M., Patil R. Sustainable agriculture through multidisciplinary seed nanopriming: prospects of opportunities and challenges. Cells. 2021; 10 (9): 2428. doi: 10.3390/cells10092428
6. Mushtaq A., Rizwan S., Jamil N., Ishtiaq T., Irfan S., Ismail T., Malghani M. N., Shahwani M. N. Influence of silicon sources and controlled release fertilizer on the growth of wheat cultivars of Balochistan under salt stress. Pakistan Journal of Botany. 2019; 51: 1561–1567. doi: 10.30848/PJB2019-5(44)
7. Ahmad A., Hashmi S. S., Palma J. M., Corpas F. J. Influence of metallic, metallic oxide, and organic nanoparticles on plant physiology. Chemosphere. 2022; 290: 133329. doi: 10.1016/j.chemosphere.2021.133329
8. Khan M. R., Adam V., Rizvi T. F., Zhang B., Ahamad F., Jośko I., Zhu Y., Yang M., Mao C. Nanoparticle-plant interactions: two-way traffic. Small. 2019; 15 (37): 1613–6810. doi: 10.1002/smll.201901794
9. Palchoudhury S., Jungjohann K. L., Weerasena L., Arabshahi A., Gharge U., Albattah A., Miller J., Patel K., Holler R. A. Enhanced legume root growth with pre-soaking in α-Fe<sub>2</sub>O<sub>3</sub> nanoparticle fertilizer. RSC Advances. 2018; 8 (43): 24075–24083. doi: 10.1039/c8ra04680h.
10. Verma K. K., Song X.-P., Joshi A., Tian D.-D., Rajput V. D., Singh M., Arora J., Minkina T., Li Y. R. Recent trends in nano-fertilizers for sustainable agriculture under climate change for global food security. Nanomaterials. 2022; 12 (1): 173. doi: 10.3390/nano12010173
11. Vijayaraghavareddy P., Vemanna R. S., Yin X., Struik P. C., Makarla U., Sreeman S. M. Acquired traits contribute more to drought tolerance in wheat than in rice. Plant Phenomics. 2020 (3): 1–16. doi: 10.34133/2020/5905371
12. Gavrish I. A., Lebedev S. V., Korotkova A. M., Kvan O. V. Influence of metal nanoparticles on the physiological and biochemical parameters of common wheat. Bulletin of the Voronezh State University of Engineering Technologies. 2019; 81 (1): 263–268 doi: 10.20914/2310-1202-2019-1-263-268 (In Russian)
13. Ehrhardt-Brocardo M. N. C., Coelho C. M. M., Souza C. A. Storage protein composition during germination and its association with physiological seed quality in common bean. Acta Scientiarum – Agronomy. 2022; 44 (1): e53434 doi: 10.4025/actasciagron.v44i1.53434
14. Nazaralian S., Majd A., Iranian S., Najafi F., Ghahremaninejad F., Landberg T., Greger M. Comparison of silicon nanoparticles and silicate treatments in fenugreek. Plant physiology and biochemistry. 2017; 115: 25–33. doi: 10.1016/j.plaphy.2017.03.009
15. Wang W., Peng H., Huang J., Cui K., Nie L. Effect of storage condition and duration on the detection of primed rice seed. Front Plant Sci. 2018; 172: 9–13. doi: 10.3389/fpls.2018.00172
16. Gong C., Wang L., Li X., Wang H., Jiang Y., Wang W. Responses of seed germination and shoot metabolic profiles of maize (Zea mays L.) to Y<sub>2</sub>O<sub>3</sub> nanoparticle stress. RSC Advances. 2019; 9 (47): 27720–27731. doi: 10.1039/C9RA04672K
Review
For citations:
Galaktionova L.V., Korotkova A.M., Terekhova N.A., Voskobulova N.I., Lebedev S.V. Evaluation of the use of silicon and iron nanoform for pre-sowing treatment of Pisum sativum seeds. Agrarian science. 2022;(12):81-86. (In Russ.) https://doi.org/10.32634/0869-8155-2022-365-12-81-86