Preview

Agrarian science

Advanced search

Evaluation of the use of silicon and iron nanoform for pre-sowing treatment of Pisum sativum seeds

https://doi.org/10.32634/0869-8155-2022-365-12-81-86

Abstract

   Relevance. Modern plant growing technologies are associated with the use of nanoparticles for pre-sowing seed treatment. The article presents the results of studying the effect of pre-sowing treatment of Pisum sativum seeds with solutions of iron and silicon nanooxides on the germination, viability and yield of plants in the conditions of the Southern Ural.

   Methods. For pre-sowing treatment of seeds, solutions of nanoparticles of SiO2 and Fe3Owere used at a concentration of 10–2, 10–3 and 10–4 mg/l, as well as a solution of mixture of two oxides. Cell viability was assessed by the method of Vijayaraghavaraddy, superoxide dismutase activity was determined by Giannopolitis and Ries, catalase, lipid peroxidation and malondialdehyde content – by Heath and Packer, and the fractional composition of proteins in seeds – by Chen.

   Results. Determination of the germination of P. sativum showed a significant stimulation of seed germination and an increase in catalase activity when seeds were treated with SiO2 in two concentrations (up to 83 % and 146 %), Fe3O4 (up to 111 %) and Fe3O4 + SiO2 (up to 47 %). A decrease in the content of malonic dialdehyde due to the treatment with SiO2 and its mixture with Fe3O4 (up to 40 %) was noted. Against the background of the use of nanoparticles for pre-sowing seed treatment, the composition of the protein complex changed due to an increase in the pool of albumins by 88 % and a decrease in the content of globulins down to 9,8 %.

About the Authors

L. V. Galaktionova
Federal Scientific Center for Biological Systems and Agrotechnologies of the Russian Academy of Sciences; Orenburg State University
Russian Federation

Ludmila V. Galaktionova, Candidate of Biological Sciences, Researcher

Laboratory of Agroecology and Soil Science

460000

st. January 9, 29

Orenburg region

Orenburg



A. M. Korotkova
Federal Scientific Center for Biological Systems and Agrotechnologies of the Russian Academy of Sciences
Russian Federation

Anastasia M. Korotkova, Candidate of Biological Sciences, Researcher

Laboratory of Biological Testing and Expertise

460000

st. January 9, 29

Orenburg region

Orenburg



N. A. Terekhova
Orenburg State University
Russian Federation

Nadezhda A. Terekhova, Graduate student

460018

13 e Pobedy Ave.

Orenburg region

Orenburg



N. I. Voskobulova
Federal Scientific Center for Biological Systems and Agrotechnologies of the Russian Academy of Sciences
Russian Federation

Nadezhda I. Voskobulova, Candidate of Agricultural Sciences, Researcher

Department of Grain and Forage Crops Technologies

460000

st. January 9, 29

Orenburg region

Orenburg



S. V. Lebedev
Federal Scientific Center for Biological Systems and Agrotechnologies of the Russian Academy of Sciences
Russian Federation

Svyatoslav V. Lebedev, Doctor of Biological Sciences, Corresponding Member,
Leading Researcher, Director

460000

st. January 9, 29

Orenburg region

Orenburg



References

1. Davydova N. V., Zamana S. P., Krokhmal I. I., Rezetkin A. M., Romanova E. S., Olkhovskaya I. P., Bogoslovskaya O. A., Yablokov A. G., Glushchenko N. N. Spring wheat indicators in response to seed treatment with metal nanoparticles. Russian nanotechnologies. 2019. Vol. 14. No. 11–12: 64-74. doi: 10.21517/1992-7223-2019-11-12-64-74 (In Russian)

2. Hoe P. T., Mai N. C., Lien L., Ban N., Van M., Chau N. H., Buu N. Q., Hien D. T. Germination responses of soybean seeds under Fe, ZnO, Cu and Co nanoparticle treatments. International Journal of Agriculture and Biology. 2018; 20 (7): 1562–1568. URL: https://www.researchgate.net/publication/326800576_Germination_responses_of_soybean_seeds_under_Fe_ZnO_Cu_and_Co_nanoparticle_treatments

3. Nile S. H., Thiruvengadam M., Wang Y., Samynathan R., Shariati M. A., Rebezov M., Nile A., Sun M., Venkidasamy B., Xiao J., Kai G. Nano-priming as emerging seed priming technology for sustainable agriculture-recent developments and future perspectives. Journal of nanobiotechnology. 2022; 20 (1): 254. doi: 10.1186/s12951-022-01423-8

4. Santo P. A. E., Oliveira H. C., Fraceto L. F., Santaella C. Nanotechnology potential in seed priming for sustainable agriculture. Nanomaterials. 2021; 11: 267. doi: 10.3390/nano11020267

5. Shelar A., Singh A. V., Maharjan R. S., Laux P., Luch A., Gemmati D., Tisato V., Singh S. P., Santilli M. F., Shelar A., Chaskar M., Patil R. Sustainable agriculture through multidisciplinary seed nanopriming: prospects of opportunities and challenges. Cells. 2021; 10 (9): 2428. doi: 10.3390/cells10092428

6. Mushtaq A., Rizwan S., Jamil N., Ishtiaq T., Irfan S., Ismail T., Malghani M. N., Shahwani M. N. Influence of silicon sources and controlled release fertilizer on the growth of wheat cultivars of Balochistan under salt stress. Pakistan Journal of Botany. 2019; 51: 1561–1567. doi: 10.30848/PJB2019-5(44)

7. Ahmad A., Hashmi S. S., Palma J. M., Corpas F. J. Influence of metallic, metallic oxide, and organic nanoparticles on plant physiology. Chemosphere. 2022; 290: 133329. doi: 10.1016/j.chemosphere.2021.133329

8. Khan M. R., Adam V., Rizvi T. F., Zhang B., Ahamad F., Jośko I., Zhu Y., Yang M., Mao C. Nanoparticle-plant interactions: two-way traffic. Small. 2019; 15 (37): 1613–6810. doi: 10.1002/smll.201901794

9. Palchoudhury S., Jungjohann K. L., Weerasena L., Arabshahi A., Gharge U., Albattah A., Miller J., Patel K., Holler R. A. Enhanced legume root growth with pre-soaking in α-Fe<sub>2</sub>O<sub>3</sub> nanoparticle fertilizer. RSC Advances. 2018; 8 (43): 24075–24083. doi: 10.1039/c8ra04680h.

10. Verma K. K., Song X.-P., Joshi A., Tian D.-D., Rajput V. D., Singh M., Arora J., Minkina T., Li Y. R. Recent trends in nano-fertilizers for sustainable agriculture under climate change for global food security. Nanomaterials. 2022; 12 (1): 173. doi: 10.3390/nano12010173

11. Vijayaraghavareddy P., Vemanna R. S., Yin X., Struik P. C., Makarla U., Sreeman S. M. Acquired traits contribute more to drought tolerance in wheat than in rice. Plant Phenomics. 2020 (3): 1–16. doi: 10.34133/2020/5905371

12. Gavrish I. A., Lebedev S. V., Korotkova A. M., Kvan O. V. Influence of metal nanoparticles on the physiological and biochemical parameters of common wheat. Bulletin of the Voronezh State University of Engineering Technologies. 2019; 81 (1): 263–268 doi: 10.20914/2310-1202-2019-1-263-268 (In Russian)

13. Ehrhardt-Brocardo M. N. C., Coelho C. M. M., Souza C. A. Storage protein composition during germination and its association with physiological seed quality in common bean. Acta Scientiarum – Agronomy. 2022; 44 (1): e53434 doi: 10.4025/actasciagron.v44i1.53434

14. Nazaralian S., Majd A., Iranian S., Najafi F., Ghahremaninejad F., Landberg T., Greger M. Comparison of silicon nanoparticles and silicate treatments in fenugreek. Plant physiology and biochemistry. 2017; 115: 25–33. doi: 10.1016/j.plaphy.2017.03.009

15. Wang W., Peng H., Huang J., Cui K., Nie L. Effect of storage condition and duration on the detection of primed rice seed. Front Plant Sci. 2018; 172: 9–13. doi: 10.3389/fpls.2018.00172

16. Gong C., Wang L., Li X., Wang H., Jiang Y., Wang W. Responses of seed germination and shoot metabolic profiles of maize (Zea mays L.) to Y<sub>2</sub>O<sub>3</sub> nanoparticle stress. RSC Advances. 2019; 9 (47): 27720–27731. doi: 10.1039/C9RA04672K


Review

For citations:


Galaktionova L.V., Korotkova A.M., Terekhova N.A., Voskobulova N.I., Lebedev S.V. Evaluation of the use of silicon and iron nanoform for pre-sowing treatment of Pisum sativum seeds. Agrarian science. 2022;(12):81-86. (In Russ.) https://doi.org/10.32634/0869-8155-2022-365-12-81-86

Views: 277


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0869-8155 (Print)
ISSN 2686-701X (Online)
X