Методы определения концентрации кортизола у животных
https://doi.org/10.32634/0869-8155-2024-381-4-35-43
Аннотация
Стероидный гормон кортизол является конечным продуктом гипоталамо-гипофизонадпочечниковой оси (ГГНО). В последнее время кортизол рассматривают как потенциальный биомаркер для выявления стресса, так как он напрямую связан с реакцией организма на тревогу. Наиболее распространенными методами для определения эндокринного статуса, в том числе кортизола, являются иммуноферментный анализ (ИФА) и радиоиммуноанализ (РИА). Они являются наиболее надежными и обладают высокой чувствительностью. Уровень кортизола определяют в основном в крови, слюне, сыворотке и моче. Концентрация гормона в этих пробах связана с циркадным ритмом и колеблется в течение дня. Поэтому образцы биоматериала позволяют анализировать острые динамические изменения кортизола. Последствия хронического стресса требуют оценки его долгосрочных уровней. Концентрация кортизола в волосах (шерсти) всё чаще используется в качестве биомаркера длительного стресса. Анализ кортизола в волосах, таким образом, стал крупным методологическим достижением, поскольку обеспечивает ретроспективную оценку кумулятивных уровней в течение длительного периода времени — от нескольких дней до нескольких месяцев. За последнее десятилетие была установлена достоверность динамики уровня кортизола в волосах (шерсти) как показателя долгосрочного уровня. Кроме того, этот материал является наиболее стабильным в течение длительного времени и устойчивым к воздействию окружающей среды. Измерение уровня кортизола в волосах — это инновационный метод определения долгосрочного его повышения, не зависящего от многих методологических трудностей и не связанного с другими матрицами. Интерес к волосам как к объекту эндокринной активности обусловлен различными уникальными особенностями, которые дают много преимуществ по сравнению с другими биоматериалами.
Ключевые слова
Об авторе
И. П. НовгородоваРоссия
Инна Петровна Новгородова, кандидат биологических наук, старший научный сотрудник лаборатории клеточной инженерии
пос. Дубровицы, 60, г. о. Подольск, Московская обл., 142132
Список литературы
1. Fourie N.H., Brown J.L., Jolly C.J., Phillips-Conroy J.E., Rogers J., Bernstein R.M. Sources of variation in hair cortisol in wild and captive non-human primates. Zoology. 2016; 119(2): 119–125. https://doi.org/10.1016/j.zool.2016.01.001
2. Fürtbauer I., Solman C., Fry A. Sheep wool cortisol as a retrospective measure of long-term HPA axis activity and its links to body mass. Domestic Animal Endocrinology. 2019; 68: 39–46. https://doi.org/10.1016/j.domaniend.2018.12.009
3. Dulude-de Broin F., Côté S.D., Whiteside D.P., Mastromonaco G.F. Faecal metabolites and hair cortisol as biological markers of HPA-axis activity in the Rocky mountain goat. General and Comparative Endocrinology. 2019; 280: 147–157. https://doi.org/10.1016/j.ygcen.2019.04.022
4. Binz T.M. et al. Endogenous cortisol in keratinized matrices: Systematic determination of baseline cortisol levels in hair and the influence of sex, age and hair color. Forensic Science International. 2018; 284: 33–38. https://doi.org/10.1016/j.forsciint.2017.12.032
5. Acker M., Mastromonaco G., Schulte-Hostedde A.I. The effects of body region, season and external arsenic application on hair cortisol concentration. Conservation Physiology. 2018; 6(1): coy037. https://doi.org/10.1093/conphys/coy037
6. Kibe M. et al. Transition to a market economy and chronic psychosocial stress in northern Laos: An exploratory study of urinary free cortisol in rural residents. American Journal of Human Biology. 2024; 36(1): e23976. https://doi.org/10.1002/ajhb.23976
7. Karachaliou C.-E. et al. Cortisol Immunosensors: A Literature Review. Biosensors. 2023; 13(2): 285. https://doi.org/10.3390/bios13020285
8. Hadad M., Hadad N., Zestos A.G. Carbon Electrode Sensor for the Measurement of Cortisol with Fast-Scan Cyclic Voltammetry. Biosensors. 2023; 13(6): 626. https://doi.org/10.3390/bios13060626
9. Bougea A., Stefanis L., Chrousos G. Stress system and related biomarkers in Parkinson’s disease. Advances in Clinical Chemistry. 2022; 111: 177–215. https://doi.org/10.1016/bs.acc.2022.07.004
10. Palme R. Non-invasive measurement of glucocorticoids: Advances and problems. Physiology & Behavior. 2019; 199: 229–243. https://doi.org/10.1016/j.physbeh.2018.11.021
11. Whitham J.C., Bryant J.L., Miller L.J. Beyond Glucocorticoids: Integrating Dehydroepiandrosterone (DHEA) into Animal Welfare Research. Animals. 2020; 10(8): 1381. https://doi.org/10.3390/ani10081381
12. Russell E., Koren G., Rieder M., Van Uum S. Hair cortisol as a biological marker of chronic stress: Current status, future directions and unanswered questions. Psychoneuroendocrinology. 2012; 37(5): 589–601. https://doi.org/10.1016/j.psyneuen.2011.09.009
13. Price E. et al. Individual, social and environmental factors affecting salivary and fecal cortisol levels in captive pied tamarins (Saguinus bicolor). American Journal of Primatology. 2019; 81(8): e23033. https://doi.org/10.1002/ajp.23033
14. Davenport M.D., Lutz C.K., Tiefenbacher S., Novak M.A., Meyer J.S. A Rhesus Monkey Model of Self-Injury: Effects of Relocation Stress on Behavior and Neuroendocrine Function. Biological Psychiatry. 2008; 63(10): 990–996. https://doi.org/10.1016/j.biopsych.2007.10.025
15. Koren L., Mokady O., Geffen E. Social status and cortisol levels in singing rock hyraxes. Hormones and Behavior. 2008; 54(1): 212–216. https://doi.org/10.1016/j.yhbeh.2008.02.020
16. Mesarcova L., Kottferova J., Skurkova L., Leskova L., Kmecova N. Analysis of cortisol in dog hair — a potential biomarker of chronic stress: a review. Veterinární medicína. 2017; 62(7): 363–376. https://doi.org/10.17221/19/2017-VETMED
17. Sandri M., Colussi A., Perrotta M.G., Stefanon B. Salivary cortisol concentration in healthy dogs is affected by size, sex, and housing context. Journal of Veterinary Behavior. 2015; 10(4): 302–306. https://doi.org/10.1016/j.jveb.2015.03.011
18. Sapolsky R.M., Romero L.M., Munck A.U. How Do Glucocorticoids Influence Stress Responses? Integrating Permissive, Suppressive, Stimulatory, and Preparative Actions. Endocrine Reviews. 2000; 21(1): 55–89. https://doi.org/10.1210/edrv.21.1.0389
19. Papadimitriou A., Priftis K.N. Regulation of the Hypothalamic-Pituitary-Adrenal Axis. Neuroimmunomodulation. 2009; 16(5): 265–271. https://doi.org/10.1159/000216184
20. Shepherdson D.J., Carlstead K.C., Wielebnowski N. Cross-institutional assessment of stress responses in zoo animals using longitudinal monitoring of faecal corticoids and behaviour. Animal Welfare. 2004; 13(S1): S105–S113. https://doi.org/10.1017/S0962728600014445
21. Ford J.L., Boch S.J., McCarthy D.O. Feasibility of Hair Collection for Cortisol Measurement in Population Research on Adolescent Health. Nursing Research. 2016; 65(3): 249–255. https://doi.org/10.1097/NNR.0000000000000154
22. Pochigaeva K. et al. Hair cortisol as a marker of hypothalamic-pituitary-adrenal Axis activity in female patients with major depressive disorder. Metabolic Brain Disease. 2017; 32(2): 577–583. https://doi.org/10.1007/s11011-017-9952-0
23. Ghassemi Nejad J., Kim B.-W., Lee B.-H., Sung K.-I. Coat and hair color: hair cortisol and serotonin levels in lactating Holstein cows under heat stress conditions. Animal Science Journal. 2017; 88(1): 190–194. https://doi.org/10.1111/asj.12662
24. Ghassemi Nejad J., Kim B.-W., Lee B.-H., Kim J.-Y., Sung K.-I. Effects of water addition to total mixed ration on water intake, nutrient digestibility, wool cortisol and blood indices in Corriedale ewes. Asian-Australasian Journal of Animal Sciences. 2017; 30(10): 1435–1441. https://doi.org/10.5713/ajas.16.0705
25. Thompson M.E., Rosati A.G., Snyder‐Mackler N. Insights from evolutionarily relevant models for human ageing. Philosophical Transactions of the Royal Society B: Biological Sciences. 2020; 375(1811): 20190605. https://doi.org/10.1098/rstb.2019.0605
26. Espitia‐Contreras J.P., Fedigan L.M., Turner S.E. Social grooming efficiency and techniques are influenced by manual impairment in free‐ranging Japanese macaques (Macaca fuscata). PLoS ONE. 2020; 15(2): e0228978. https://doi.org/10.1371/journal.pone.0228978
27. Narayan E. Physiological stress levels in wild koala sub‐populations facing anthropogenic induced environmental trauma and disease. Scientific Reports. 2019; 9: 6031. https://doi.org/10.1038/s41598-019-42448-8
28. Turner S.E. et al. Mothers of disabled infants had higher cortisol levels in a free‐ranging group of Japanese macaques (Macaca fuscata). American Journal of Primatology. 2023; 85(7): e23500. https://doi.org/10.1002/ajp.23500
29. Nedić S. et al. Cortisol concentrations in hair, blood and milk of Holstein and Busha cattle. Slovenian Veterinary Research. 2017; 54(4): 163–172. https://doi.org/10.26873/SVR-398-2017
30. Zhang Q., Chen Z., Chen S., Xu Y., Deng H. Intraindividual stability of cortisol and cortisone and the ratio of cortisol to cortisone in saliva, urine and hair. Steroids. 2017; 118: 61–67. https://doi.org/10.1016/j.steroids.2016.12.008
31. Nejad J.G., Park K.-H., Forghani F., Lee H.-G., Lee J.-S., Sung K.-I. Measuring hair and blood cortisol in sheep and dairy cattle using RIA and ELISA assay: a comparison. Biological Rhythm Research. 2020; 51(6): 887–897. https://doi.org/10.1080/09291016.2019.1611335
32. Sergiel A. Do follicles matter? Testing the effect of follicles on hair cortisol levels. Conservation Physiology. 2020; 8(1): coaa003. https://doi.org/10.1093/conphys/coaa003
33. Boolani A. et al. Trends in Analysis of Cortisol and Its Derivatives. Woods A.G., Darie C.C. (eds.). Advancements of Mass Spectrometry in Biomedical Research. Cham: Springer. 2019; 649–664. https://doi.org/10.1007/978-3-030-15950-4_39
34. Giacomello G., Scholten A., Parr M.K. Current methods for stress marker detection in saliva. Journal of Pharmaceutical and Biomedical Analysis. 2020; 191: 113604. https://doi.org/10.1016/j.jpba.2020.113604
35. Kannankeril J. et al. Prospective Evaluation of Late-Night Salivary Cortisol and Cortisone by EIA and LC-MS/MS in Suspected Cushing Syndrome. Journal of the Endocrine Society. 2020; 4(10): bvaa107. https://doi.org/10.1210/jendso/bvaa107
36. Casals G., Hanzu F.A. Cortisol Measurements in Cushing’s Syndrome: Immunoassay or Mass Spectrometry?. Annals of Laboratory Medicine. 2020; 40(4): 285–296. https://doi.org/10.3343/alm.2020.40.4.285
37. Caruso B., Bovo C., Guidi G.C. Causes of preanalytical interferences on laboratory immunoassays — a critical review. The Journal of the International Federation of Clinical Chemistry and Laboratory Medicine. 2020; 31(1): 70–84.
38. Lopez A.-G., Fraissinet F., Lefebvre H., Brunel V., Ziegler F. Pharmacological and analytical interference in hormone assays for diagnosis of adrenal incidentaloma. Annales dʼEndocrinologie. 2019; 80(4): 250–258. https://doi.org/10.1016/j.ando.2018.11.006
39. Sheriff M.J., Dantzer B., Delehanty B., Palme R., Boonstra R. Measuring stress in wildlife: techniques for quantifying glucocorticoids. Oecologia. 2011; 166(4): 869–887. https://doi.org/10.1007/s00442-011-1943-y
40. Boroumand M. et al. Saliva, a bodily fluid with recognized and potential diagnostic applications. Journal of Separation Science. 2021; 44(19): 3677–3690. https://doi.org/10.1002/jssc.202100384
41. Gonzalez D. et al. Hair Cortisol Measurement by an Automated Method. Scientific Reports. 2019; 9: 8213. https://doi.org/10.1038/s41598-019-44693-3
42. El Mlili N., Ahabrach H., Cauli O. Hair Cortisol Concentration as a Biomarker of Sleep Quality and Related Disorders. Life. 2021; 11(2): 81. https://doi.org/10.3390/life11020081
43. Cieszyński Ł., Jendrzejewski J., Wiśniewski P., Owczarzak A., Sworczak K. Hair cortisol concentration in a population without hypothalamic-pituitary-adrenal axis disorders. Advances in clinical and experimental medicine. 2019; 28(3): 369–373. https://doi.org/10.17219/acem/90038
44. Cieszyński Ł., Jendrzejewski J., Wiśniewski P., Kłosowski P., Sworczak K. Correlation analysis of cortisol concentration in hair versus concentrations in serum, saliva and urine. Endokrynologia Polska. 2020; 71(6): 539–544. https://doi.org/10.5603/EP.a2020.0058
45. Peric T. Hair: a tool to evaluate HPA axis activity. Dissertation thesis. Bologna. 2014; X: 61. https://doi.org/10.6092/unibo/amsdottorato/6253
46. Sauvé B., Koren G., Walsh G., Tokmakejian S., Van Uum S.H.M. Measurement of cortisol in human hair as a biomarker of systemic exposure. Clinical and Investigative Medicine. 2007; 30(5): E183–E191. https://doi.org/10.25011/cim.v30i5.2894
47. Vanaelst B. et al. Intercorrelations between serum, salivary, and hair cortisol and child‐reported estimates of stress in elementary school girls. Psychophysiology. 2012; 49(8): 1072–1081. https://doi.org/10.1111/j.1469-8986.2012.01396.x
48. Yamanashi Y. et al. Analysis of hair cortisol levels in captive chimpanzees: Effect of various methods on cortisol stability and variability. MethodsX. 2016; 3: 110–117. https://doi.org/10.1016/j.mex.2016.01.004
49. Comin A., Peric T., Magrin L., Corazzin M., Cornacchia G., Prandi A. Study of progesterone and cortisol concentrations in the Italian Friesian claw. Journal of Dairy Science. 2014; 97(9): 5491–5496. https://doi.org/10.3168/jds.2014-7943
50. Veronesi M.C., Comin A., Meloni T., Faustini M., Rota A., Prandi A. Coat and claws as new matrices for noninvasive long-term cortisol assessment in dogs from birth up to 30 days of age. Theriogenology. 2015; 84(5): 791–796. https://doi.org/10.1016/j.theriogenology.2015.05.013
51. Romero L.M., Fairhurst G.D. Measuring corticosterone in feathers: Strengths, limitations, and suggestions for the future. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology. 2016; 202: 112–122. https://doi.org/10.1016/j.cbpa.2016.05.002
52. Schaafsma F.G., Hulsegge G., de Jong M.A., Overvliet J., van Rossum E.F.C., Nieuwenhuijsen K. The potential of using hair cortisol to measure chronic stress in occupational healthcare; a scoping review. Journal of Occupational Health. 2021; 63(1): e12189. https://doi.org/10.1002/1348-9585.12189
53. de Meirelles A.G. et al. Hair as a Specimen to Determine the Concentration of Cortisol Levels in Individuals that have Performed Physical Activity. Trichology and Cosmetology. 2018; 3(1): 1–6. https://doi.org/10.17140/TCOJ-3-110
54. Hamel A.F., Meyer J.S., Henchey E., Dettmer A.M., Suomi S.J., Novak M.A. Effects of shampoo and water washing on hair cortisol concentrations. Clinica Chimica Acta. 2011; 412(3–4): 382–385. https://doi.org/10.1016/j.cca.2010.10.019
55. Cattet M. et al. Can concentration of steroid hormones in brown bear hair reveal age class?. Conservation Physiology. 2018; 6(1): coy001. https://doi.org/10.1093/conphys/coy001
56. Webb E. et al. Assessing individual systemic stress through cortisol analysis of archaeological hair. Journal of Archaeological Science. 2010; 37(4): 807–812. https://doi.org/10.1016/j.jas.2009.11.010
57. Reid J., Parker K., Clemens L., Bristow M. Validity and reliability of method used to analyse hair cortisol concentration. F1000Research. 2021; 10: 349. https://doi.org/10.12688/f1000research.28187.1
58. Heimbürge S., Kanitz E., Otten W. The use of hair cortisol for the assessment of stress in animals. General and Comparative Endocrinology. 2019; 270: 10–17. https://doi.org/10.1016/j.ygcen.2018.09.016
59. Bowland G.B. et al. Fur Color and Nutritional Status Predict Hair Cortisol Concentrations of Dogs in Nicaragua. Frontiers in Veterinary Science. 2020; 7: 565346. https://doi.org/10.3389/fvets.2020.565346
60. Quade L., Chazot P.L., Gowland R. Desperately seeking stress: A pilot study of cortisol in archaeological tooth structures. American Journal of Biological Anthropology. 2021; 174(3): 532–541. https://doi.org/10.1002/ajpa.24157
61. Helfrecht C., Hagen E.H., DeAvila D., Bernstein R.M., Dira S.J., Meehan C.L. DHEAS patterning across childhood in three sub-Saharan populations: Associations with age, sex, ethnicity, and cortisol. American Journal of Human Biology. 2018; 30(2): e23090. https://doi.org/10.1002/ajhb.23090
62. Bergamin C. et al. Cortisol, DHEA, and Sexual Steroid Concentrations in Fattening Pigs’ Hair. Animals. 2019; 9(6): 345. https://doi.org/10.3390/ani9060345
63. Placci M. et al. Natural Horse Boarding Vs Traditional Stable: A Comparison of Hormonal, Hematological and Immunological Parameters. Journal of Applied Animal Welfare Science. 2020; 23(3): 366–377. https://doi.org/10.1080/10888705.2019.1663737
64. Bennett A., Hayssen V. Measuring cortisol in hair and saliva from dogs: coat color and pigment differences. Domestic Animal Endocrinology. 2010; 39(3): 171–180. https://doi.org/10.1016/j.domaniend.2010.04.003
Рецензия
Для цитирования:
Новгородова И.П. Методы определения концентрации кортизола у животных. Аграрная наука. 2024;(4):35-43. https://doi.org/10.32634/0869-8155-2024-381-4-35-43
For citation:
Novgorodova I.P. Methods for determining cortisol concentrations in animals. Agrarian science. 2024;(4):35-43. (In Russ.) https://doi.org/10.32634/0869-8155-2024-381-4-35-43