A new antimicrobial food peptide: characteristics, properties and effectiveness evaluation
https://doi.org/10.32634/0869-8155-2024-381-4-132-137
Abstract
Promising candidates as antibacterial drugs are antimicrobial peptides (AMP) present in cow colostrum. The aim of the research is to isolate, theoretically substantiate and confirm the biological activity of a new AMP from pepsin hydrolysate of cow colostrum with the amino acid sequence EKLAKNKLARGLKRK. According to the Protein NCBI database, the isolated AMP is identified as AW655195.1 105840 MARC 1BOV/ Bos taurus (cattle). When identifying AMP from the database of antimicrobial peptides APD, it was not found. When identifying AMP using the DRAMP database, the object under study is missing, but its characteristics belong to the antimicrobial class. The total hydrophobic ratio of the peptide determined by APD is 33%. The total net charge is +6, the molecular weight is 1753.151 Da. Protein binding potential (Boman index) at 3.44 kcal/mol. The selected AMP is close in characteristics to the known ones included in the APD database. AMP belongs to the cationic hydrophobic α-helical, which suggests its antimicrobial activity. As a result of in vitro experiments, the antimicrobial and antitumor activity of the peptide has been proven.
About the Authors
E. A. UlitinaRussian Federation
Elizaveta Andreevna Ulitina, Postgraduate Student
Sh. S. Valieva
Russian Federation
Sholpan Sergeevna Valieva, Postgraduate Student
42 Karl Liebknecht Str., Yekaterinburg, 620075
S. L. Tikhonov
Russian Federation
Sergey Leonidovich Tikhonov, Doctor of Technical Sciences, Professor
42 Karl Liebknecht Str., Yekaterinburg, 620075
37 Siberian Tract, Yekaterinburg, 620100
N. V. Tikhonova
Russian Federation
Natalia Valeryevna Tikhonova, Doctor of Technical Sciences, Professor
42 Karl Liebknecht Str., Yekaterinburg, 620075
References
1. Lee J.-Y. et al. Structure-activity relationship-based screening of antibiotics against Gram-negative Acinetobacter baumannii. Bioorganic & Medicinal Chemistry. 2017; 25 (1): 372–380. https://doi.org/10.1016/j.bmc.2016.11.001
2. Wang B. et al. Functional and expression characteristics identification of Phormicins, novel AMPs from Musca domestica with anti-MRSA biofilm activity, in response to different stimuli. International Journal of Biological Macromolecules. 2022; 209: 299–314. https://doi.org/10.1016/j.ijbiomac.2022.03.204
3. Rajasekaran G. et al. Antimicrobial and anti-inflammatory activities of chemokine CXCL14-derived antimicrobial peptide and its analogs. Biochimica et Biophysica Acta (BBA) — Biomembranes. 2019; 1861(1): 256‒267. https://doi.org/10.1016/j.bbamem.2018.06.016
4. Domhan C. et al. A novel tool against multiresistant bacterial pathogens: lipopeptide modification of the natural antimicrobial peptide ranalexin for enhanced antimicrobial activity and improved pharmacokinetics. International Journal of Antimicrobial Agents. 2018; 52(1): 52‒62. https://doi.org/10.1016/j.ijantimicag.2018.03.023
5. Kim E.Y. et al. LL-37-derived short antimicrobial peptide KR-12-a5 and its d-amino acid substituted analogs with cell selectivity, anti-biofilm activity, synergistic effect with conventional antibiotics, and anti-inflammatory activity. European Journal of Medicinal Chemistry. 2017; 136: 428–441. https://doi.org/10.1016/j.ejmech.2017.05.028
6. Mallapragada S., Wadhwa A., Agrawal P. Antimicrobial peptides: The miraculous biological molecules. Journal of Indian Society of Periodontology. 2017; 21(6): 434–438.
7. Faya M., Kalhapure R.S., Kumalo H.M., Waddad A.Y., Omolo C., Govender T. Conjugates and nano-delivery of antimicrobial peptides for enhancing therapeutic activity. Journal of Drug Delivery Science and Technology. 2028; 44: 153‒171. https://doi.org/10.1016/j.jddst.2017.12.010
8. Nordström R., Malmsten M. Delivery systems for antimicrobial peptides. Advances in Colloid and Interface Science. 2017; 242: 17‒34. https://doi.org/10.1016/j.cis.2017.01.005
9. Cummins C., Lundy R., Walsh J.J., Ponsinet V., Fleury G., Morris M.A. Enabling future nanomanufacturing through block copolymer self-assembly: A review. Nano Today. 2020; 35: 100936. https://doi.org/10.1016/j.nantod.2020.100936
10. Zhang K. et al. Layered nanofiber sponge with an improved capacity for promoting blood coagulation and wound healing. Biomaterials. 2019; 204: 70‒79. https://doi.org/10.1016/j.biomaterials.2019.03.008
11. Wang С., Hong T., Cui P., Wang J., Xia J. Antimicrobial peptides towards clinical application: Delivery and formulation. Advanced Drug Delivery Reviews. 2020; 175: 113818. https://doi.org/10.1016/j.addr.2021.05.028
12. Yang X., van der Donk W.A. Ribosomally Synthesized and Post-Translationally Modified Peptide Natural Products: New Insights into the Role of Leader and Core Peptides during Biosynthesis. Chemistry. 2013; 19(24): 7662–7677. https://doi.org/10.1002/chem.201300401
13. Lovering A.L., Safadi S.S., Strynadka N.C.J. Structural Perspective of Peptidoglycan Biosynthesis and Assembly. Annual Review of Biochemistry. 2012; 81: 451–478. https://doi.org/10.1146/annurev-biochem-061809-112742
14. Gan B.H., Gaynord J., Rowe S.M., Deingruber T., Spring D.R. The multifaceted nature of antimicrobial peptides: current synthetic chemistry approaches and future directions. Chemical Society Reviews. 2021; 50(13): 7820–7880. https://doi.org/10.1039/d0cs00729c
15. Mermer S. et al. Ceftaroline versus vancomycin in the treatment of methicillin-resistant Staphylococcus aureus (MRSA) in an experimental MRSA meningitis model. Journal of Global Antimicrobial Resistance. 2020; 22: 147–151. https://doi.org/10.1016/j.jgar.2020.02.001
16. Ramesh S., de la Torre B.G., Albericio F., Kruger H.G., Govender T. Microwave-Assisted Synthesis of Antimicrobial Peptides. Hansen P.R. (ed.). Antimicrobial Peptides. Methods and Protocols. New York, NY: Humana Press. 2016; 51–59. https://doi.org/10.1007/978-1-4939-6737-7_4
17. Sangild P.T., Vonderohe C., Melendez Hebib V., Burrin D.G. Potential Benefits of Bovine Colostrum in Pediatric Nutrition and Health. Nutrients. 2021; 13(8): 2551. https://doi.org/10.3390/nu13082551
18. Duffuler P., Bhullar K.S., de Campos Zani S.C., Wu J. Bioactive Peptides: From Basic Research to Clinical Trials and Commercialization. Journal of Agricultural and Food Chemistry. 2022; 70(12); 3585–3595. https://doi.org/10.1021/acs.jafc.1c06289
19. Merzlyakova N.V., Tikhonov S.L., Tikhonova N.V., Shikhalev S.V. Mathematical modeling of fermentation of cow colostrum protein for the production of antimicrobial and antifungal peptides. Agro-Industrial Complex of Russia. 2023; 30(3); 433‒439 (in Russian). https://elibrary.ru/rabpxc
20. Porcelli F., Ramamoorthy A., Barany G., Veglia G. On the Role of NMR Spectroscopy for Characterization of Antimicrobial Peptides. Ghirlanda G., Senes A. (eds.). Membrane Proteins. Folding, Association, and Design. Totowa, NJ: Humana Press. 2013; 159–180. https://doi.org/10.1007/978-1-62703-583-5_9
21. Takahashi D., Shukla S.K., Prakash O., Zhang G. Structural determinants of host defense peptides for antimicrobial activity and target cell selectivity. Biochimie. 2010; 92(9): 1236–1241. https://doi.org/10.1016/j.biochi.2010.02.023
22. Nguyen L.T, Haney E.F., Vogel H.J. The expanding scope of antimicrobial peptide structures and their modes of action. Trends in Biotechnology. 2011; 29(9): 464–472. https://doi.org/10.1016/j.tibtech.2011.05.001
23. Jenssen H., Hamill P., Hancock R.E.W. Peptide Antimicrobial Agents. Clinical Microbiology Reviews. 2016; 19(3): 491–511. https://doi.org/10.1128/CMR.00056-05
24. Yasir M., Willcox M.D.P., Dutta D. Action of Antimicrobial Peptides against Bacterial Biofilms. Materials. 2018; 11(12): 2468. https://doi.org/10.3390/ma11122468
25. Xuan J. et al. Antimicrobial peptides for combating drug-resistant bacterial infections. Drug Resistance Updates. 2023; 68: 100954. https://doi.org/10.1016/j.drup.2023.100954
Review
For citations:
Ulitina E.A., Valieva Sh.S., Tikhonov S.L., Tikhonova N.V. A new antimicrobial food peptide: characteristics, properties and effectiveness evaluation. Agrarian science. 2024;(4):132-137. (In Russ.) https://doi.org/10.32634/0869-8155-2024-381-4-132-137