Preview

Agrarian science

Advanced search

Dairy product enriched with triple manganese complex

https://doi.org/10.32634/0869-8155-2024-382-5-117-123

Abstract

Micronutrient deficiency is a serious problem in Russia. In this article, we developed a complex of the essential microelement  manganese  with  ascorbic  acid  and L-isoleucine.  The  properties  of  the  resulting  compound were  studied  by  X-ray  phase  analysis,  IR  spectroscopy,  and  computer  quantum  chemical  modeling.  It  was established that the complex has an amorphous structure. As a result of the simulation, the optimal interaction model  was  determined:  through  the  carboxyl  group  and α-amino  group  of  L-isoleucine,  and  through  the  C2 and C3 atoms of ascorbic acid ( E = -2264.757 kcal/mol). Quantum chemical modeling data were confirmed by  IR  spectroscopy.  The  stability  of  the  complex  was  studied  under  various  technological  parameters  (pH, temperature  and  exposure  time).  To  do  this,  a  multifactorial  experiment  was  carried  out  with  three  input parameters  and  three  levels  of  variation.  It  has  been  shown  that  the  stability  of  the  ternary  complex  of  the essential microelement manganese with ascorbic acid and the essential amino acid L-isoleucine is significantly influenced  by  all  parameters  (pH,  temperature  and  exposure  time).  It  was  found  that  with  increasing  pH, temperature  and  exposure  time,  ∆  Eh  increases,  which  indicates  a  loss  of  stability  of  the  complex  and  its destruction. The parameters at which the stability of the samples is observed correspond to the lowest values of ∆  Eh: pH = 3–7,  t = 25–60°,  τ = 5–15. At the next stage, milk was enriched with the resulting compound at the  rate  of  30%  of  the  daily  dose  of  manganese  consumption  and  studied  the  physicochemical  parameters of  milk  depending  on  the  concentration  of  the  developed  complex.  It  was  found  that  for  the  enrichment of   manganese ascorbate isoleucinate it is necessary to use concentrations of 0.005 mol/l or less, since the obtained indicators correspond to the quality standards established in the Russian Federation. According to the organoleptic assessment, the values of the indicators (smell and taste) of milk enriched with manganese ascorbate isoleucinate exceed the values of the indicators of the control sample (JSC MKS, Stavropol, Russia) and the sample enriched with the inorganic form of iron — manganese sulfate.

About the Authors

A. V. Blinov
North Caucasus Federal University
Russian Federation

Andrey Vladimirovich Blinov, Candidate of  Technical Sciences, Associate Professor of the Department of Physics and Technology of Nanostructures and Materials

1 Pushkin St r., Stavropol, 355002



Z. A. Rekhman
North Caucasus Federal University
Russian Federation

Zafar Abdulovich Rekhman, Assistant at the Department of  Physics and Technology of  Nanostructures and Materials

1 Pushkin St r., Stavropol, 355002



A. A. Gvozdenko
North Caucasus Federal University
Russian Federation

Alexey Alexeevich Gvozdenko, Assistant at the Department of  Physics and Technology of Nanostructures and Materials

1 Pushkin St r., Stavropol, 355002



A. B. Golik
North Caucasus Federal University
Russian Federation

Alexey Borisovich Golik, Assistant at the Department of  Physics and Technology of  Nanostructures and Materials

1 Pushkin St r., Stavropol, 355002



A. A. Nagdalуan
North Caucasus Federal University
Russian Federation

Andrey Ashotovich Nagdalуan, Candidate of  Technical Sciences, Senior Researcher at the Research Laboratory of  Food and Industrial Biotechnology

1 Pushkin St r., Stavropol, 355002



M. B. Rebezov
V.M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences; Ural State Agrarian University
Russian Federation

Maksim Borisovich Rebezov, Doctor of Agricultural Sciences, Candidate of Veterinary Sciences, Professor, Chief Researcher; Doctor of Agricultural Sciences, Candidate of Veterinary Sciences, Professor of the Department of Biotechnology and Food Products

26 Talalikhin Str., Moscow, 109316

42 Karl Liebknecht Str., Yekaterinburg, 620075



References

1. Sultana S. et al. Impacts of nutritive and bioactive compounds on cancer development and therapy. Critical Reviews in Food Science and Nutrition. 2023; 63(28): 9187–9216. https://doi.org/10.1080/10408398.2022.2062699

2. Sarkar T. et al. Underutilized green leafy vegetables: frontier in fortified food development and nutrition. Critical Reviews in Food Science and Nutrition. 2023; 63(33): 11679–11733. https://doi.org/10.1080/10408398.2022.2095555

3. Thiruvengadam M. et al. A comprehensive review of beetroot (Beta vulgaris L.) bioactive components in the food and pharmaceutical industries. Critical Reviews in Food Science and Nutrition. 2024; 64(3): 708–739. https://doi.org/10.1080/10408398.2022.2108367

4. Kazakova T.V. Adaptive reactions of the body against the background of subchronic exposure to manganese. Aghajanian readings. Materials of the IV All-Russian scientific and practical conference with international participation. Moscow: Peoples’ Friendship University of Russia named after Patrice Lumumba. 2023; 167–170 (in Russian). https://elibrary.ru/fbaxkj

5. Nekrasov V.I., Skalny A.V., Dubovoy R.M. The role of microelements in increasing the functional reserves of the human body. Bulletin of the Russian Military Medical Academy. 2006; (1): 111–113 (in Russian). https://elibrary.ru/kwznxl

6. Novikov V.S., Shustov Е.B. Role of minerals and microelements in human health maintenance. Vestnik obrazovaniya i razvitiya nauki Rossiyskoy akademii yestestvennykh nauk. 2017; (3): 5–16 (in Russian). https://elibrary.ru/zsived

7. Chen P., Bornhorst J.B., Aschner M. Manganese metabolism in humans. Frontiers in Bioscience-Landmark. 2018; 23(9): 1655–1679. https://doi.org/10.2741/4665

8. Leach R.M., Harris E.D. Manganese. O’Dell B.L., Sunde R.A. (eds.). Handbook of Nutritionally Essential Mineral Elements. Boca Raton: CRC Press. 1997; 335–356. https://doi.org/10.1201/9781482273106-10

9. Keen C.L., Ensunsa J.L., Clegg M.S. Manganese metabolism in animals and humans including the toxicity of manganese. Sigel A., Sigel H. (eds.). Metal Ions in Biological Systems. Boca Raton: CRC Press. 2000; 37: 89–121. https://doi.org/10.1201/9781482289893-14

10. Tuschl K., Mills P.B., Clayton P.T. Manganese and the Brain. International Review of Neurobiology. 2013; 110: 277–312. https://doi.org/10.1016/B978-0-12-410502-7.00013-2

11. Budinger D., Barral S., Soo A.K.S., Kurian M.A. The role of manganese dysregulation in neurological disease: emerging evidence. The Lancet Neurology. 2021; 20(11): 956–968. https://doi.org/10.1016/S1474-4422(21)00238-6

12. Bauer J.A. et al. Critical windows of susceptibility in the association between manganese and neurocognition in Italian adolescents living near ferro-manganese industry. NeuroToxicology. 2021; 87: 51–61. https://doi.org/10.1016/j.neuro.2021.08.014

13. Gonzalez-Alvarez M.A., Hernandez-Bonilla D., Plascencia-Alvarez N.I., Riojas-Rodriguez H., Rosselli D. Environmental and occupational exposure to metals (manganese, mercury, iron) and Parkinson’s disease in low and middle-income countries: a narrative review. Reviews on Environmental Health. 2022; 37(1): 1–11. https://doi.org/10.1515/reveh-2020-0140

14. Avila D.S., Puntel R.L., Aschner M. Manganese in Health and Disease. Sigel A., Sigel H., Sigel R.K.O. (eds.). Interrelations between Essential Metal Ions and Human Diseases. Dordrecht: Springer. 2014; 199–227. https://doi.org/10.1007/978-94-007-7500-8_7

15. Wilcox J.M. et al. YAC128 mouse model of Huntington disease is protected against subtle chronic manganese (Mn)-induced behavioral and neuropathological changes. NeuroToxicology. 2021; 87: 94–105. https://doi.org/10.1016/j.neuro.2021.09.002

16. Akhmetshina Z.R. Deficiency of vitamins and trace elements in human nutrition. Humanitarian and legal problems of modern Russia. Proceedings of the XVIII Аll-Russian student scientific and practical conference. Novosibirsk: Zolotoy Kolos. 2023; 3: 19–22 (in Russian). https://elibrary.ru/gpualm

17. Muslimov N.J., Tuyakova A.R., Dalabaev A.B. Determination of the quantitative yield of the extract from sprouted grain. Herald of science of S. Seifullin Kazakh Agro Technical Research University. 2023; (2): 32–42 (in Kazakh). https://elibrary.ru/sdhinx

18. Pobilat A.E., Voloshin E.I. Manganese in soils and plants of the southern part of Central Siberia. Trace Elements in Medicine. 2017; 18(2): 43–47 (in Russian). https://doi.org/10.19112/2413-6174-2017-18-2-43-47

19. Azarenko Yu.A. Regularities of content, distribution, relationships of microelements in the soil — plant system in the conditions of the south of Western Siberia. Omsk: Variant-Omsk. 2013; 229 (in Russian). ISBN 978-5-904754-52-5 https://elibrary.ru/tlztqj

20. Skalny A.V., Suldin A.V., Ivanova N.A., Sambulova A.A., Lipina M.V. Development of medicines for treatment and prevention of zinc, copper, manganese, chromium and cobalt deficiency. Vestnik of the Orenburg State University. 2011; (15): 123–126 (in Russian). https://elibrary.ru/oydfdz

21. Blinov A.V., Serov A.V., Kravtsov V.A., Rusanov A.Yu., Solovyova S.N. Methods for increasing the bioavailability of essential microelements. Physico-chemical biology. Materials of the III International Scientific Internet Conference. Stavropol: Stavropol State Medical University. 2015; 28–30 (in Russian). https://elibrary.ru/vjsvjb

22. Lohmann W., Pagel D., Penka V. Structure of ascorbic acid and its biological function: Determination of the conformation of ascorbic acid and isoascorbic acid by infrared and ultraviolet investigations. European Journal of Biochemistry. 1984; 138(3): 479–480. https://doi.org/10.1111/j.1432-1033.1984.tb07941.x

23. Metreveli N.O. et al. UV-vis and FT-IR spectra of ultraviolet irradiated collagen in the presence of antioxidant ascorbic acid. Ecotoxicology and Environmental Safety. 2010; 73(3): 448–455. https://doi.org/10.1016/j.ecoenv.2009.12.005

24. Yadav R.A., Rani P., Kumar M., Singh R., Singh P., Singh N.P. Experimental IR and Raman spectra and quantum chemical studies of molecular structures, conformers and vibrational characteristics of L-ascorbic acid and its anion and cation. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2011; 84(1): 6–21. https://doi.org/10.1016/j.saa.2011.07.043

25. Zhang X., Yang Z., Li W., Yang L., Weng S., Wu J. The interaction between amino acids and metal ions (I). The FT-IR spectroscopic study of the binding between d,l-homocysteic acid and alkali metal ions. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2004; 60(1–2): 235–240. https://doi.org/10.1016/S1386-1425(03)00224-5


Review

For citations:


Blinov A.V., Rekhman Z.A., Gvozdenko A.A., Golik A.B., Nagdalуan A.A., Rebezov M.B. Dairy product enriched with triple manganese complex. Agrarian science. 2024;(5):117-123. (In Russ.) https://doi.org/10.32634/0869-8155-2024-382-5-117-123

Views: 154


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0869-8155 (Print)
ISSN 2686-701X (Online)
X