GWAS как инструмент обнаружения SNPs у крупного рогатого скота для изучения их связи с воспроизводством, продуктивностью, ростом, поведением, болезнями
https://doi.org/10.32634/0869-8155-2024-385-8-124-131
Аннотация
Фундаментальная цель животноводства — это рентабельное производство продуктов питания для человека из здоровых животных, которое включает производство, воспроизводство. Метод полногеномного поиска ассоциаций (Whole-Genome Associated Study, GWAS) активно используется в различных областях, в том числе и в молекулярно-генетических исследованиях с.-х. животных. Полногеномный анализ ассоциаций создавался для идентификации геномных вариаций, связанных с экономически значимыми признаками у различных видов сельскохозяйственных животных. Данный метод геномной селекции дает новые приоритеты для улучшения продуктивных и воспроизводительных качеств домашнего скота.
Цель данной обзорной статьи — всесторонний анализ текущего состояния GWAS у крупного рогатого скота, сосредоточив внимание на выявлении SNP, связанных с воспроизводством, продуктивностью, ростом, поведением и генетически обусловленными заболеваниями. Объем статьи охватывает изучение результатов GWAS по всему миру, как у молочного, так и у мясного скота, с особым акцентом на идентификацию генов-кандидатов, QTL и областей генома, связанных с направлением продуктивности. Кроме того, этот обзор включает классификацию результатов GWAS на основе изученных конкретных признаков, предоставляя всесторонний обзор генетических детерминант воспроизводства, роста, поведения и признаков заболеваний крупного рогатого скота.
Об авторах
Т. А. ЛаркинаРоссия
Татьяна Александровна Ларкина, кандидат биологических наук, младший научный сотрудник
Московское шоссе, 55А, Санкт-Петербург, Пушкин, 196601
Г. В. Ширяев
Россия
Геннадий Владимирович Ширяев, кандидат сельскохозяйственных наук, старший научный сотрудник
Московское шоссе, 55А, Санкт-Петербург, Пушкин, 196601
Список литературы
1. Mottet A., de Haan C., Falcucci A., Tempio G., Opio C., Gerber P. Livestock: On our plates or eating at our table? A new analysis of the feed/food debate. Global Food Security. 2017; 14: 1–8. https://doi.org/10.1016/j.gfs.2017.01.001
2. White R.R., Hall M.B. Nutritional and greenhouse gas impacts of removing animals from US agriculture. Proceedings of the National Academy of Sciences. 2017; 114(48): E10301–E10308. https://doi.org/10.1073/pnas.1707322114
3. Bögeholz A. et al. GWAS Hits for Bilateral Convergent Strabismus with Exophthalmos in Holstein Cattle Using Imputed Sequence Level Genotypes. Genes. 2021; 12(7): 1039. https://doi.org/10.3390/genes12071039
4. Araujo A.C. et al. Haplotype-Based Single-Step GWAS for Yearling Temperament in American Angus Cattle. Genes. 2022; 13(1): 17. https://doi.org/10.3390/genes13010017
5. Freebern E. et al. GWAS and fine-mapping of livability and six disease traits in Holstein cattle. BMC Genomics. 2020; 21: 41. https://doi.org/10.1186/s12864-020-6461-z
6. Abdellaoui A., Yengo L., Verweij K.J.H., Visscher P.M. 15 years of GWAS discovery: Realizing the promise. The American Journal of Human Genetics. 2023; 110(2): 179‒194. https://doi.org/10.1016/j.ajhg.2022.12.011
7. Wiggans G.R. et al. Selection of single-nucleotide polymorphisms and quality of genotypes used in genomic evaluation of dairy cattle in the United States and Canada. Journal of Dairy Science. 2009; 92(7): 3431‒3436. https://doi.org/10.3168/jds.2008-1758
8. Wiggans G.R. et al. Selection and management of DNA markers for use in genomic evaluation. Journal of Dairy Science. 2010; 93(5): 2287‒2292. https://doi.org/10.3168/jds.2009-2773
9. Van Tassell C.P. et al. SNP discovery and allele frequency estimation by deep sequencing of reduced representation libraries. Nature Methods. 2008; 5(3): 247‒252. https://doi.org/10.1038/nmeth.1185
10. Matukumalli L.K. et al. Development and Characterization of a High Density SNP Genotyping Assay for Cattle. PLoS ONE. 2009; 4(4): e5350. https://doi.org/10.1371/journal.pone.0005350
11. Reis H.B.D. et al. Genome-Wide Association (GWAS) Applied to Carcass and Meat Traits of Nellore Cattle. Metabolites. 2023; 14(1): 6. https://doi.org/10.3390/metabo14010006
12. Fan H. et al. Pathway-Based Genome-Wide Association Studies for Two Meat Production Traits in Simmental Cattle. Scientific Reports. 2016; 5: 18389. https://doi.org/10.1038/srep18389
13. Jiang L. et al. Genome Wide Association Studies for Milk Production Traits in Chinese Holstein Population. PLoS ONE. 2010; 5(10): e13661. https://doi.org/10.1371/journal.pone.0013661
14. Stegemiller M.R. et al. Genome-Wide Association Analyses of Fertility Traits in Beef Heifers. Genes. 2021; 12(2): 217. https://doi.org/10.3390/genes12020217
15. Melo T.P.d., de Camargo G.M.F., de Albuquerque L.G., Carvalheiro R. Genome-wide association study provides strong evidence of genes affecting the reproductive performance of Nellore beef cows. PLoS ONE. 2017; 12(5): e0178551. https://doi.org/10.1371/journal.pone.0178551
16. Zhuang Z. et al. Weighted Single-Step Genome-Wide Association Study for Growth Traits in Chinese Simmental Beef Cattle. Genes. 2020; 11(2): 189. https://doi.org/10.3390/genes11020189
17. Ma L., Cole J.B., Da Y., Van Raden P.M. Symposium review: Genetics, genome-wide association study, and genetic improvement of dairy fertility traits. Journal of Dairy Science. 2019; 102(4): 3735‒3743. https://doi.org/10.3168/jds.2018-15269
18. Teissier M. et al. Use of meta-analyses and joint analyses to select variants in whole genome sequences for genomic evaluation: An application in milk production of French dairy cattle breeds. Journal of Dairy Science. 2018; 101(4): 3126‒3139. https://doi.org/10.3168/jds.2017-13587
19. Kim H.J., de las Heras-Saldana S., Moghaddar N., Lee S.-H., Lim D., van der Werf J.H.J. Genome-wide association study for carcass traits in Hanwoo cattle using additional relatives’ information of non-genotyped animals. Animal Genetics. 2022; 53(6): 863‒866. https://doi.org/10.1111/age.13251
20. Raven L.-A., Cocks B.G., Hayes B.J. Multibreed genome wide association can improve precision of mapping causative variants underlying milk production in dairy cattle. BMC Genomics. 2014; 15: 62. https://doi.org/10.1186/1471-2164-15-62
21. Cai Z., Christensen O.F., Lund M.S., Ostersen T., Sahana G. Large-scale association study on daily weight gain in pigs reveals overlap of genetic factors for growth in humans. BMC Genomics. 2022; 23: 133. https://doi.org/10.1186/s12864-022-08373-3
22. Abanda B. et al. Genetic Analyses and Genome-Wide Association Studies on Pathogen Resistance of Bos taurus and Bos indicus Cattle Breeds in Cameroon. Genes. 2021; 12(7): 976. https://doi.org/10.3390/genes12070976
23. Dobson H., Smith R.F., Royal M.D., Knight C.H., Sheldon I.M. The Highproducing Dairy Cow and its Reproductive Performance. Reproduction in Domestic Animals. 2007; 42(S2): 17‒23. https://doi.org/10.1111/j.1439-0531.2007.00906.x
24. Liu A. et al. Variance components and correlations of female fertility traits in Chinese Holstein population. Journal of Animal Science and Biotechnology. 2017; 8: 56. https://doi.org/10.1186/s40104-017-0189-x
25. Rojas Canadas E. et al. Associations between postpartum phenotypes, cow factors, genetic traits, and reproductive performance in seasonal-calving, pasture-based lactating dairy cows. Journal of Dairy Science. 2020; 103(1): 1016‒1030. https://doi.org/10.3168/jds.2018-16001
26. Struck T.J., Mannakee B.K., Gutenkunst R.N. The impact of genome-wide association studies on biomedical research publications. Human Genomics. 2018; 12: 38. https://doi.org/10.1186/s40246-018-0172-4
27. Visscher P.M. et al. 10 Years of GWAS Discovery: Biology, Function, and Translation. The American Journal of Human Genetics. 2017; 101(1): 5–22. https://doi.org/10.1016/j.ajhg.2017.06.005
28. Liu A. et al. Genome-Wide Association Studies for Female Fertility Traits in Chinese and Nordic Holsteins. Scientific Reports. 2017; 7: 8487. https://doi.org/10.1038/s41598-017-09170-9
29. Clapham D.E. Calcium Signaling. Cell. 2007; 131(6): 1047–1058. https://doi.org/10.1016/j.cell.2007.11.028
30. Parekh A.B. Decoding cytosolic Ca2+ oscillations. Trends in Biochemical Sciences. 2011; 36(2): 78–87. https://doi.org/10.1016/j.tibs.2010.07.013
31. Zhou L., Ding X., Zhang Q., Wang Y., Lund M.S., Su G. Consistency of linkage disequilibrium between Chinese and Nordic Holsteins and genomic prediction for Chinese Holsteins using a joint reference population. Genetics Selection Evolution. 2013; 45: 7. https://doi.org/10.1186/1297-9686-45-7
32. Pausch H. et al. Genome-Wide Association Study Identifies Two Major Loci Affecting Calving Ease and Growth-Related Traits in Cattle. Genetics. 2011; 187(1): 289–297. https://doi.org/10.1534/genetics.110.124057
33. Schulman N.F. et al. Mapping of fertility traits in Finnish Ayrshire by genome-wide association analysis. Animal Genetics. 2011; 42(3): 263–269. https://doi.org/10.1111/j.1365-2052.2010.02149.x
34. Höglund J.K., Guldbrandtsen B., Lund M.S., Sahana G. Identification of genomic regions associated with female fertility in Danish Jersey using whole genome sequence data. BMC Genetics. 2015; 16: 60. https://doi.org/10.1186/s12863-015-0210-3
35. Minozzi G. et al. Genome Wide Analysis of Fertility and Production Traits in Italian Holstein Cattle. PLoS ONE. 2013; 8(11): e80219. https://doi.org/10.1371/journal.pone.0080219
36. Müller M.-P. et al. Genome-wide mapping of 10 calving and fertility traits in Holstein dairy cattle with special regard to chromosome 18. Journal of Dairy Science. 2017; 100(3): 1987–2006. https://doi.org/10.3168/jds.2016-11506
37. Pausch H., Emmerling R., Schwarzenbacher H., Fries R. A multi-trait metaanalysis with imputed sequence variants reveals twelve QTL for mammary gland morphology in Fleckvieh cattle. Genetics Selection Evolution. 2016; 48: 14. https://doi.org/10.1186/s12711-016-0190-4
38. Sahana G., Höglund J.K., Guldbrandtsen B., Lund M.S. Loci associated with adult stature also affect calf birth survival in cattle. BMC Genetics. 2015; 16: 47. https://doi.org/10.1186/s12863-015-0202-3
39. Cole J.B. et al. Distribution and location of genetic effects for dairy traits. Journal of Dairy Science. 2009; 92(6): 2931–2946. https://doi.org/10.3168/jds.2008-1762
40. Sahana G., Guldbrandtsen B., Bendixen C., Lund M.S. Genome-wide association mapping for female fertility traits in Danish and Swedish Holstein cattle. Animal Genetics. 2010; 41(6): 579–588. https://doi.org/10.1111/j.1365-2052.2010.02064.x
41. Zhou J. et al. Genome-wide association study of milk and reproductive traits in dual-purpose Xinjiang Brown cattle. BMC Genomics. 2019; 20: 827. https://doi.org/10.1186/s12864-019-6224-x
42. Dong W. et al. Integrative analysis of genome-wide DNA methylation and gene expression profiles reveals important epigenetic genes related to milk production traits in dairy cattle. Journal of Animal Breeding and Genetics. 2021; 138(5): 562–573. https://doi.org/10.1111/jbg.12530
43. Cole J.B. et al. Genome-wide association analysis of thirty one production, health, reproduction and body conformation traits in contemporary U.S. Holstein cows. BMC Genomics. 2011; 12: 408. https://doi.org/10.1186/1471-2164-12-408
44. Prakapenka D., Liang Z., Da Y. Genome-Wide Association Study of Age at First Calving in U.S. Holstein Cows. International Journal of Molecular Sciences. 2023; 24(8): 7109. https://doi.org/10.3390/ijms24087109
45. Li J., Wang Y., Mukiibi R., Karisa B., Plastow G.S., Li C. Integrative analyses of genomic and metabolomic data reveal genetic mechanisms associated with carcass merit traits in beef cattle. Scientific Reports. 2022; 12: 3389. https://doi.org/10.1038/s41598-022-06567-z
46. Niu Q. et al. Integration of selection signatures and multi-trait GWAS reveals polygenic genetic architecture of carcass traits in beef cattle. Genomics. 2021; 113(5): 3325–3336. https://doi.org/10.1016/j.ygeno.2021.07.025
47. Liu J., Xu L., Ding X., Ma Y. Genome-Wide Association Analysis of Reproductive Traits in Chinese Holstein Cattle. Genes. 2024; 15(1): 12. https://doi.org/10.3390/genes15010012
48. Zepeda-Batista J.L., Núñez-Domínguez R., Ramírez-Valverde R., Jahuey-Martínez F.J., Herrera-Ojeda J.B., Parra-Bracamonte G.M. Discovering of Genomic Variations Associated to Growth Traits by GWAS in Braunvieh Cattle. Genes. 2021; 12(11): 1666. https://doi.org/10.3390/genes12111666
Рецензия
Для цитирования:
Ларкина Т.А., Ширяев Г.В. GWAS как инструмент обнаружения SNPs у крупного рогатого скота для изучения их связи с воспроизводством, продуктивностью, ростом, поведением, болезнями. Аграрная наука. 2024;1(8):124-131. https://doi.org/10.32634/0869-8155-2024-385-8-124-131
For citation:
Larkina T.A., Shiryaev G.V. GWAS as a tool for detecting SNPs in cattle to study their relationship to reproduction, productivity, growth, behavior, diseases. Agrarian science. 2024;1(8):124-131. (In Russ.) https://doi.org/10.32634/0869-8155-2024-385-8-124-131