Intracellular hydrogen peroxide’s effect on quality parameters of rooster sperm in freeze/thaw cycle
https://doi.org/10.32634/0869-8155-2024-385-8-132-138
Abstract
Relevance. One of the factors decreasing total motility after cryopreservation rooster’s sperm is influence of reactive oxygen species. Morphological and biochemical features of avian spermatozoa structure, which make them more susceptible to cryopreservation process compared to mammalian spermatozoa, may also be the reason why avian spermatozoa are more susceptible to oxidative stress.
Methods. The purpose of the study is to trace the change in the level of intracellular reactive oxygen species, in particular hydrogen peroxide (H2O2), during the cryopreservation of rooster sperm, to assess its effect on the quality and viability of sperm.
Results. A negative correlation (r = -0.68, p < 0.05) was found between the intracellular level of hydrogen peroxide and the number of dead cells in native sperm. In the frozen (thawed) seed, a weak relationship was observed between these indicators (r = -0.10). There was a significant effect of the level of intracellular hydrogen peroxide in freshly obtained ejaculates on the overall mobility of frozen (thawed) semen (r = -0.65, p < 0.05). This allows us to assume that, similarly to mammalian spermatozoa, the production by cells of an increased amount of reactive oxygen species (H2O2) in the freezing (thawing) cycle negatively affects the functional status of mitochondria, which, as is known, are the main source of energy for the sperm, ensuring the operation of the kinetic apparatus of the sperm and its general mobility. Data were obtained on the individual variability of the hydrogen peroxide content in the sperm of roosters at the age of 61 weeks in the freezing (thawing) cycle, allowing the selection of roosters according to this indicator
About the Authors
A. A. KurochkinRussian Federation
Anton Alekseevich Kurochkin, Junior Research Assistant
55А Moskovskoe shosse, Tyarlevo village, Pushkin, St. Petersburg, 196625
T. I. Kuzmina
Russian Federation
Tatyana Ivanovna Kuzmina, Chief Researcher, Professor, Doctor of Biological Sciences
55А Moskovskoe shosse, Tyarlevo village, Pushkin, St. Petersburg, 196625
O. I. Stanishevskaya
Russian Federation
Olga Igorevna Stanishevskaya, Chief Researcher, Doctor of Biological Sciences
55А Moskovskoe shosse, Tyarlevo village, Pushkin, St. Petersburg, 196625
References
1. Blesbois E. et al. Semen Cryopreservation for Ex Situ Management of Genetic Diversity in Chicken: Creation of the French Avian Cryobank. Poultry Science. 2007; 86(3): 555–564. https://doi.org/10.1093/ps/86.3.555
2. Shaffner C.S., Henderson E.W., Card C.G. Viability of Spermatozoa of the Chicken Under Various Environmental Conditions. Poultry Science. 1941; 20(3): 259–265. https://doi.org/10.3382/ps.0200259
3. Tselutin K., Narubina L., Mavrodina T., Tur B. Cryopreservation of poultry semen. British Poultry Science. 1995; 36(5): 805–811. https://doi.org/10.1080/00071669508417825
4. Chalah T., Seigneurin F., Blesbois E., Brillard J.P. In vitro Comparison of Fowl Sperm Viability in Ejaculates Frozen by Three Different Techniques and Relationship with Subsequent Fertility in Vivo. Cryobiology. 1999; 39(2): 185–191. https://doi.org/10.1006/cryo.1999.2201
5. Novgorodova I.P., Zhilinsky M.A., Volkova N.A., Bagirov V.A., Zinovyeva N.A. Cryoconservation of Cockerels’ Semen: The Basic Principles and Methodical Approaches. Ptitsevodstvo. 2016; 8: 2–7 (in Russian). https://elibrary.ru/wicjpn
6. Silyukova Yu.L., Stanishevskaya O.I., Pleshanov N.V., Kurochkin A.A. Efficiency of using a combination of mono- and disac-charides in a diluent for freezing rooster semen. Agricultural Biology. 2020; 55(6): 1148–1158. https://doi.org/10.15389/agrobiology.2020.6.1148eng
7. Thélie A., Bailliard A., Seigneurin F., Zerjal T., Tixier-Boichard M., Blesbois E. Chicken semen cryopreservation and use for the restoration of rare genetic resources. Poultry Science. 2018; 98(1): 447–455. https://doi.org/10.3382/ps/pey360
8. Ehling C., Taylor U., Baulain U., Weigend S., Henning M., Rath D. Cryopreservation of semen from genetic resource chicken lines. Landbauforschung. 2012; 62(3): 151–158.
9. Long J.A., Kulkarni G. An effective method for improving the fertility of glycerol-exposed poultry semen. Poultry Science. 2004; 83(9): 1594–1601. https://doi.org/10.1093/ps/83.9.1594
10. Santiago-Moreno J. et al. Cryoprotective and contraceptive properties of egg yolk as an additive in rooster sperm diluents. Cryobiology. 2012; 65(3): 230–234. https://doi.org/10.1016/j.cryobiol.2012.06.008
11. Long J.A. Avian Semen Cryopreservation: What Are the Biological Challenges? Poultry Science. 2006; 85(2): 232–236. https://doi.org/10.1093/ps/85.2.232
12. Aitken R.J. Reactive oxygen species as mediators of sperm capacitation and pathological damage. Molecular Reproduction and Development. 2017; 84(10): 1039–1052. https://doi.org/10.1002/mrd.22871
13. Ford W.C.L. Regulation of sperm function by reactive oxygen species. Human Reproduction Update. 2004; 10(5): 387–399. https://doi.org/10.1093/humupd/dmh034
14. Pons-Rejraji H., Sion B., Saez F., Brugnon F., Janny L., Grizard G. Rôles des dérivés actifs de l’oxygène (DAO) sur les spermatozoïdes humains et infertilité masculine. Gynécologie Obstétrique & Fertilité. 2009; 37(6): 529–535. https://doi.org/10.1016/j.gyobfe.2009.04.015
15. Baumber J., Ball B.A., Linfor J.J., Meyers S.A. Reactive Oxygen Species and Cryopreservation Promote DNA Fragmentation in Equine Spermatozoa. Journal of Andrology. 2003; 24(4): 621–628. https://doi.org/10.1002/j.1939-4640.2003.tb02714.x
16. Hamilton T.R.d.S. et al. Induced lipid peroxidation in ram sperm: semen profile, DNA fragmentation and antioxidant status. Reproduction. 2016; 151(4): 379–390. https://doi.org/10.1530/rep-15-0403
17. Armstrong J.S., Rajasekaran M., Chamulitrat W., Gatti P., Hellstrom W.J., Sikka S.C. Characterization of reactive oxygen species induced effects on human spermatozoa movement and energy metabolism. Free Radical Biology and Medicine. 1999; 26(7–8): 869–880. https://doi.org/10.1016/s0891-5849(98)00275-5
18. Bilodeau J.-F., Blanchette S., Cormier N., Sirard M.-A. Reactive oxygen species mediated loss of bovine sperm motility in egg yolk Tris extender: protection by pyruvate, metal chelators and bovine liver or oviductal fluid catalase. Theriogenology. 2002; 57(3): 1105–1122. https://doi.org/10.1016/S0093-691X(01)00702-6
19. Guthrie H.D., Welch G.R., Long J.A. Mitochondrial function and reactive oxygen species action in relation to boar motility. Theriogenology. 2008; 70(8): 1209–1215. https://doi.org/10.1016/j.theriogenology.2008.06.017
20. Baumber J., Ball B.A., Gravance C.G., Medina V., Davies‐Morel M.C.G. The Effect of Reactive Oxygen Species on Equine Sperm Motility, Viability, Acrosomal Integrity, Mitochondrial Membrane Potential, and Membrane Lipid Peroxidation. Journal of Andrology. 2000; 21(6): 895–902. https://doi.org/10.1002/j.1939-4640.2000.tb03420.x
21. Parks J.E., Lynch D.V. Lipid composition and thermotropic phase behavior of boar, bull, stallion, and rooster sperm membranes. Cryobiology. 1992; 29(2): 255–266. https://doi.org/10.1016/0011-2240(92)90024-v
22. Long J.A. Applied andrology in chickens and turkeys. Chenoweth P., Lorton S. (eds.). Animal Andrology: Theories and Applications. Boston, MA, USA: CABI. 2014; 197–225. https://doi.org/10.1079/9781780643168.0197
23. Surai P.F., Fujihara N., Speake B.K., Brillard J.-P., Wishart G.J., Sparks N.H.C. Polyunsaturated Fatty Acids, Lipid Peroxidation and Antioxidant Protection in Avian Semen - Review. Asian-Australasian Journal of Animal Sciences. 2001; 14(7): 1024–1050. https://doi.org/10.5713/ajas.2001.1024
24. Mehaisen G.M.K., Partyka A., Ligocka Z., Niżański W. Cryoprotective effect of melatonin supplementation on post-thawed rooster sperm quality. Animal Reproduction Science. 2019; 212: 106238. https://doi.org/10.1016/j.anireprosci.2019.106238
25. Moghbeli M. et al. Are the optimum levels of the catalase and vitamin E in rooster semen extender after freezing-thawing influenced by sperm concentration? Cryobiology. 2016; 72(3): 264–268. https://doi.org/10.1016/j.cryobiol.2016.03.008
26. Surai P.F., Cerolini S., Wishart G.J., Speake B.K., Noble R.C., Sparks N.H.C. Lipid and Antioxidant Composition of Chicken Semen and its Susceptibility to Peroxidation. Avian and Poultry Biology Reviews. 1998; 9(1): 11–23.
27. Khan R.U. Antioxidant and poultry semen quality. World’s Poultry Science Journal. 2011; 67(2): 297–308. https://doi.org/10.1017/S0043933911000316
28. Zhao X., Yang Z.B., Yang W.R., Wang Y., Jiang S.Z., Zhang G.G. Effects of ginger root (Zingiber officinale) on laying performance and antioxidant status of laying hens and on dietary oxidation stability. Poultry Science. 2011; 90(8): 1720–1727. https://doi.org/10.3382/ps.2010-01280
29. Khan R.U., Rahman Z.-u., Javed I., Muhammad F. Effect of vitamins, probiotics and protein on semen traits in post-molt male broiler breeders. Animal Reproduction Science. 2012; 135(1–4): 85–90. https://doi.org/10.1016/j.anireprosci.2012.09.005
30. Sikka S.C. Relative Impact of Oxidative Stress on Male Reproductive Function. Current Medicinal Chemistry. 2001; 8(7): 851–862. https://doi.org/10.2174/0929867013373039
31. Salehi M., Mahdavi A.H., Sharafi M., Shahverdi A. Cryopreservation of rooster semen: Evidence for the epigenetic modifications of thawed sperm. Theriogenology. 2019; 142: 15–25. https://doi.org/10.1016/j.theriogenology.2019.09.030
32. Rui B.R. et al. Impact of induced levels of specific free radicals and malondialdehyde on chicken semen quality and fertility. Theriogenology. 2017; 90: 11–19. https://doi.org/10.1016/j.theriogenology.2016.11.001
33. Amini M.R., Kohram H., Zare-Shahaneh A., Zhandi M., Sharideh H., Nabi M.M. The effects of different levels of catalase and superoxide dismutase in modified Beltsville extender on rooster post-thawed sperm quality. Cryobiology. 2015; 70(3): 226–232. https://doi.org/10.1016/j.cryobiol.2015.03.001
34. Burrows W.H., Quinn J.P. The Collection of Spermatozoa from the Domestic Fowl and Turkey. Poultry Science. 1937; 16(1): 19–24. https://doi.org/10.3382/ps.0160019
35. Dikalov S.I., Harrison D.G. Methods for Detection of Mitochondrial and Cellular Reactive Oxygen Species. Antioxidants & Redox Signaling. 2014; 20(2): 372–382. https://doi.org/10.1089/ars.2012.4886
36. Partyka A., Niżański W., Łukaszewicz E. Evaluation of fresh and frozen-thawed fowl semen by flow cytometry. Theriogenology. 2010; 74(6): 1019–1027. https://doi.org/10.1016/j.theriogenology.2010.04.032
37. Bernal B. et al. Birchen and Blue Leonesa sperm cryopreservation: a new technique for evaluating the integrity of cockerel sperm membranes. British Poultry Science. 2022; 63(2): 244–251. https://doi.org/10.1080/00071668.2021.1955333
38. Richter C., Park J.W., Ames B.N. Normal oxidative damage to mitochondrial and nuclear DNA is extensive. Proceedings of the National Academy of Sciences. 1988; 85(17): 6465–6467. https://doi.org/10.1073/pnas.85.17.6465
39. Liang Q., Dedon P.C. Cu(II)/H2O2-Induced DNA Damage Is Enhanced by Packaging of DNA as a Nucleosome. Chemical Research in Toxicology. 2001; 14(4): 416–422. https://doi.org/10.1021/tx0002278
40. Núñez M.E., Noyes K.T., Barton J.K. Oxidative Charge Transport through DNA in Nucleosome Core Particles. Cell Chemical Biology. 2002; 9(4): 403–415. https://doi.org/10.1016/s1074-5521(02)00121-7
41. Córdova Izquierdo A. et al. Effect of Oxidative Stress on Sperm Cells. Bagatini M.D. (ed.). Glutathione System and Oxidative Stress in Health and Disease. IntechOpen. 2020. https://doi.org/10.5772/intechopen.88499
42. Amaral A., Lourenço B., Marques M., Ramalho-Santos J. Mitochondria functionality and sperm quality. Reproduction. 2013; 146(5): R163–R174. https://doi.org/10.1530/rep-13-0178
Review
For citations:
Kurochkin A.A., Kuzmina T.I., Stanishevskaya O.I. Intracellular hydrogen peroxide’s effect on quality parameters of rooster sperm in freeze/thaw cycle. Agrarian science. 2024;1(8):132-138. (In Russ.) https://doi.org/10.32634/0869-8155-2024-385-8-132-138