Status of research on the major histocompatibility complex (OLA) in sheep
https://doi.org/10.32634/0869-8155-2025-390-01-93-99
Abstract
Relevance. To study the polymorphism of genes of the main histocompatibility complex, the nomenclature of loci, the designation of OLA alleles in sheep, the associative relationship with resistance or sensitivity to parasitic and infectious diseases.
The aim of the study is the state of knowledge of the main histocompatibility complex (OLA) in sheep.
System analysis, statistical review of literature data from Russian and foreign sources on the study of sheep major histocompatibility complex (OLA) were used in this work. According to the level of study of OLA, sheep are among ten known animal species: primates, dogs, cats, horses, sheep, goats, pigs, cattle, salmon and mice. OLA is involved in the immune system of sheep and encodes foreign antigen recognition proteins. Studies by a number of scientists have shown that OLA genes have significant polymorphism, along with other genetic markers. In this regard, the OLA nomenclature is being intensively formed (10 loci are already known). The loci and alleles determining resistance or susceptibility to parasitic and other diseases have been identified. This will allow further selection and formation of populations of resistant animals to certain infectious origins. Knowledge of the genetic structure in DRB1 and DQB loci of sheep will make it possible to develop a reagent-software complex for studies to assess the level of OLA polymorphism in different breeds of sheep. Genotyping of sheep at early stages of development by genes of the main histocompatibility complex will make it possible to identify animals resistant or susceptible to diseases.
Keywords
About the Authors
S. N. MarzanovaRussian Federation
Saida Nurbievna Marzanova, Candidate of Biological Sciences, Associate Professor
23 Акаdemik Skriabin Str., Moscow, 109472
D. A. Devrishov
Russian Federation
Davuday Abdulsemedovich Devrishov, Doctor of Biological Sciences, Professor
23 Акаdemik Skriabin Str., Moscow, 109472
K. F. Fatakhov
Russian Federation
Kurban Fatakhovich Fatakhov, Candidate of Veterinary Sciences
23 Акаdemik Skriabin Str., Moscow, 109472
N. S. Marzanov
Russian Federation
Nurbiy Safarbievich Marzanov, Doctor of Biological Sciences, Professor
60 Dubrovitsy settlement, Podolsk, Moscow region, 142132
References
1. Omarova F.A., Drokov M.Yu., Khamaganova E.G. Major histocompatibility complex: history of discovery, evolution, structure, significance for transplantation of allogenetic hematopoietic stem cells. Transplantologiya. The Russian Journal of Transplantation. 2023; 15(2):251-265. https://doi.org/10.23873/2074-0506-2023-15-2-251-265
2. Hassan M. etal. The dynamic influence of the DRB1*1101 allele on the resistance of sheep to experimental Teladorsagia circumcincta infection. Veterinary Research. 2011; 42: 46. https://doi.org/10.1186/1297-9716-42-46
3. Longeri M. et al. Association Between BoLA-DRB3.2 Polymorphism and Bovine Papillomavirus Infection for Bladder Tumor Risk in Podolica Cattle. Frontiers in Veterinary Science. 2021; 8: 630089. https://doi.org/10.3389/fvets.2021.630089
4. Portanier E. et al. Both candidate gene and neutral genetic diversity correlate with parasite resistance in female Mediterranean mouflon. BMC Ecology. 2019; 19: 12. https://doi.org/10.1186/s12898-019-0228-x
5. Esmailnejad A., Ganjiani V., Hosseini-Nasab E., Nazifi S. Association of Ovar-DRB1 alleles with innate immune responses in sheep. Veterinary Medicine and Science. 2022; 8(2): 752-757. https://doi.org/10.1002/vms3.683
6. Salim B. etal. Exploring genetic diversity and variation of Ovar-DRB1 gene in Sudan Desert Sheep using targeted next-generation sequencing. BMC Genomics. 2024; 25: 160. https://doi.org/10.1186/s12864-024-10053-3
7. Maccari G. et al. IPD-MHC 2.0: an improved inter-species database for the study of the major histocompatibility complex. Nucleic Acids Research. 2017; 45(D1): D860-D864. https://doi.org/10.1093/nar/gkw1050
8. Ellis S.A. et al. ISAG/IUIS-VIC Comparative MHC Nomenclature Committee report, 2005. Immunogenetics. 2006; 57(12): 953-958. https://doi.org/10.1007/s00251-005-0071-4
9. Radwan J., Babik W., Kaufman J., Lenz T.L., Winternitz J. Advances in the Evolutionary Understanding of MHC Polymorphism. Trends in Genetics. 2020; 36(4): 298-311. https://doi.org/10.1016/j.tig.2020.01.008
10. Robinson J., Barker D.J., Georgiou X., Cooper M.A., Flicek P., Marsh S.G.E. IPD-IMGT/HLA Database. Nucleic Acids Research. 2020; 48(D1): D948-D955. https://doi.org/10.1093/nar/gkz950
11. Vasoya D. et al. High throughput analysis of MHC-I and MHC-DR diversity of Brazilian cattle populations. HLA. 2021; 98(2): 93-113. https://doi.org/10.1111/tan.14339
12. Barker D.J. et al. The IPD-IMGT/HLA Database. Nucleic Acids Research. 2023; 51(D1): D1053-D1060. https://doi.org/10.1093/nar/gkac1011
13. Silwamba I. et al. High throughput analysis of MHC class I and class II diversity of Zambian indigenous cattle populations. HLA. 2023; 101(5): 458-483. https://doi.org/10.1111/tan.14976
14. Francisco R.d.S. et al. Differential haplotype expression in class I MHC genes during SARS-CoV-2 infection of human lung cell lines. Frontiers in Immunology. 2023; 13: 1101526. https://doi.org/10.3389/fimmu.2022.1101526
15. Ballingall K.T., Herrmann-Hoesing L., Robinson J., Marsh S.G.E., Stear M.J. A single nomenclature and associated database for alleles at the major histocompatibility complex class II DRB1 locus of sheep. Tissue Antigens. 2011; 77(6): 543-556. https://doi.org/10.1111/j.1399-0039.2011.01637.x
16. Marsh S.G.E. et al. Nomenclature for factors of the HLA system, 2010. Tissue Antigens. 2010; 75(4): 291-455. https://doi.org/10.1111/j.1399-0039.2010.01466.x
17. Millot P Genetic control of lymphocyte antigens in sheep: The OLA complex and two minor loci. Immunogenetics. 1979; 9: 509-534. https://doi.org/10.1007/BF01570447
18. Millot P The OLA major histocompatibility complex of sheep. Study of six new factors and evidence of a third locus of the complex OLA-C. Experimental and Clinical Immunogenetics. 1984; 1(1): 31-42.
19. Chardon P et al. Analysis of the sheep MHC using HLA class I, class II and C4 cDNA probes. Immunogenetics. 1985; 22(4): 349-358. https://doi.org/10.1007/BF00430918
20. Hediger R. Die in situ hybridisierung zur genkartierung beim rind und schaf. Ph.D. Thesis. Zurich: Eidgenossischen Technischen Hochschule. 1988; 163 (in German).
21. Hediger R., Ansari H.A., Stranzinger G.F. Chromosome banding and gene localizations support extensive conservation of chromosome structure between cattle and sheep. Cytogenetics and Cell Genetics. 1991; 57(2-3): 127-134. https://doi.org/10.1159/000133131
22. Mahdy E.A. Makinen A., Chowdhary B.P, Andersson L., Gustavsson I. Chromosomal localization of the ovine major histocompatibility complex (OLA) by in situ hybridization. Hereditas. 1989; 111(1): 87-90. https://doi.org/10.1111/j.1601-5223.1989.tb00381.x
23. Miltiadou D., Ballingall K.T., Ellis S.A., Russel G.C., McKeever D.J. Haplotype characterization of transcribed ovine major histocompatibility complex (MHC) class I genes. Immunogenetics. 2005; 57(7): 499-509. https://doi.org/10.1007/s00251-005-0008-y
24. Vasoya D., Connelley T., Tzelos T., Todd H., Ballingall K.T. Large scale transcriptional analysis of MHC class I haplotype diversity in sheep. HLA. 2024; 103(2): e15356. https://doi.org/10.1111/tan.15356
25. Bay V., Kele? M., Aymaz R., Hatipoglu E., Oner Y, Yaman Y Documentation of extensive genetic diversity in the Ovar-DRB1 gene in native Turkish sheep. Animal Biotechnology. 2021; 32(4): 507-518. https://doi.org/10.1080/10495398.2021.1884086
26. Ali A.O.A. et al. Association of MHC class II haplotypes with reduced faecal nematode egg count and IgA activity in British Texel sheep. Parasite Immunology. 2019; 41(7): e12626. https://doi.org/10.1111/pim.12626
27. Stear A. et al. Identification of the amino acids in the Major Histocompatibility Complex class II region of Scottish Blackface sheep that are associated with resistance to nematode infection. International Journal for Parasitology. 2019; 49(10): 797-804. https://doi.org/10.1016Zj.ijpara.2019.05.003
28. Stear M., Preston S., Piedrafita D., Donskow-Lysoniewska K. The Immune Response to Nematode Infection. International Journal of Molecular Sciences. 2023; 24(3): 2283. https://doi.org/10.3390/ijms24032283
29. Yaman Y et al. A novel 2 bp deletion variant in Ovine-DRB1 gene is associated with increased Visna/maedi susceptibility in Turkish sheep. Scientific Reports. 2021; 11: 14435. https://doi.org/10.1038/s41598-021-93864-8
30. Marzanov N.S., Nasibov M.G., Ozerov M.Yu., Kantanen Yu. Allelofond of Various Sheep Breeds by Microsatellites. Dubrovitsy: 11-y FORMAT. 2004; 119 (in Russian). https://elibrary.ru/vvtaik
31. Marzanov N.S. et al. Evolution and genetic technology in fine-wool sheep breeding. Moscow: Rosinformagrotech. 2012; 174 (in Russian). ISBN 978-5-7367-0909-0 https://elibrary.ru/qlctsd
32. Moiseykina L.G., Marzanov N.S., Marzanova S.N. Sheep breeding using genetic markers. Elista: Kalmyk State University named after B.B. Gorodovikov. 2013; 100 (in Russian). https://elibrary.ru/virmin
33. Zhang M. et al. Y-chromosome haplotype diversity of domestic sheep (Ovis aries) in northern Eurasia. Animal Genetics. 2014; 45(6): 903-907. https://doi.org/10.1111/age.12214
34. Marzanov N.S. et al. The Significance of a Multilocus Analysis for Assessing the Biodiversity of the Romanov Sheep Breed in a Comparative Aspect. Animals. 2023; 13(8): 1320. https://doi.org/10.3390/ani13081320
35. Geldermann H., Mir M.R., Kuss A.W., Bartenschlager H. OLA-DRB1 microsatellite variants are associated with ovine growth and reproduction traits. Genetics Selection Evolution. 2006; 38: 431. https://doi.org/10.1186/1297-9686-38-4-431
36. Wang K. et al. MHC-DRB1 exon 2 polymorphism and its association with mycoplasma ovipneumonia resistance or susceptibility genotypes in sheep. Journal of Genetics. 2020; 99: 22. https://doi.org/10.1007/s12041-020-1175-1
37. Huang W., Dicks K.L., Hadfield J.D., Johnston S.E., Ballingall K.T., Pemberton J.M. Contemporary selection on MHC genes in a free-living ruminant population. Ecology Letters. 2022; 25(4): 828-838. https://doi.org/10.1111/ele.13957
38. Gowane G.R. et al. Cross-population genetic analysis revealed genetic variation and selection in the Ovar-DRB1 gene of Indian sheep breeds. Animal Biotechnology. 2023; 34(7): 2928-2939. https://doi.org/10.1080/10495398.2022.2125404
39. Gowane G.R. et al. Population-wide genetic analysis of Ovar-DQA1 and DQA2 loci across sheep breeds in India revealed their evolutionary importance and fitness of sheep in a tropical climate. Animal Biotechnology. 2023; 34(9): 4645-4657. https://doi.org/10.1080/10495398.2023.2180010
Review
For citations:
Marzanova S.N., Devrishov D.A., Fatakhov K.F., Marzanov N.S. Status of research on the major histocompatibility complex (OLA) in sheep. Agrarian science. 2025;1(1):93-99. (In Russ.) https://doi.org/10.32634/0869-8155-2025-390-01-93-99