Preview

Agrarian science

Advanced search

Status of research on the major histocompatibility complex (OLA) in sheep

https://doi.org/10.32634/0869-8155-2025-390-01-93-99

Abstract

Relevance. To study the polymorphism of genes of the main histocompatibility complex, the nomenclature of loci, the designation of OLA alleles in sheep, the associative relationship with resistance or sensitivity to parasitic and infectious diseases.
The aim of the study is the state of knowledge of the main histocompatibility complex (OLA) in sheep.
System analysis, statistical review of literature data from Russian and foreign sources on the study of sheep major histocompatibility complex (OLA) were used in this work. According to the level of study of OLA, sheep are among ten known animal species: primates, dogs, cats, horses, sheep, goats, pigs, cattle, salmon and mice. OLA is involved in the immune system of sheep and encodes foreign antigen recognition proteins. Studies by a number of scientists have shown that OLA genes have significant polymorphism, along with other genetic markers. In this regard, the OLA nomenclature is being intensively formed (10 loci are already known). The loci and alleles determining resistance or susceptibility to parasitic and other diseases have been identified. This will allow further selection and formation of populations of resistant animals to certain infectious origins. Knowledge of the genetic structure in DRB1 and DQB loci of sheep will make it possible to develop a reagent-software complex for studies to assess the level of OLA polymorphism in different breeds of sheep. Genotyping of sheep at early stages of development by genes of the main histocompatibility complex will make it possible to identify animals resistant or susceptible to diseases.

About the Authors

S. N. Marzanova
Moscow State Academy of Veterinary Medicine and Biotechnology — MVA by K.I. Skryabin
Russian Federation

Saida Nurbievna Marzanova, Candidate of Biological Sciences, Associate Professor

23 Акаdemik Skriabin Str., Moscow, 109472



D. A. Devrishov
Moscow State Academy of Veterinary Medicine and Biotechnology — MVA by K.I. Skryabin
Russian Federation

Davuday Abdulsemedovich Devrishov, Doctor of Biological Sciences, Professor

23 Акаdemik Skriabin Str., Moscow, 109472



K. F. Fatakhov
Moscow State Academy of Veterinary Medicine and Biotechnology — MVA by K.I. Skryabin
Russian Federation

Kurban Fatakhovich Fatakhov, Candidate of Veterinary Sciences

23 Акаdemik Skriabin Str., Moscow, 109472



N. S. Marzanov
L.K. Ernst Federal Research Center for Animal Husbandry
Russian Federation

Nurbiy Safarbievich Marzanov, Doctor of Biological Sciences, Professor

60 Dubrovitsy settlement, Podolsk, Moscow region, 142132



References

1. Omarova F.A., Drokov M.Yu., Khamaganova E.G. Major histocompatibility complex: history of discovery, evolution, structure, significance for transplantation of allogenetic hematopoietic stem cells. Transplantologiya. The Russian Journal of Transplantation. 2023; 15(2):251-265. https://doi.org/10.23873/2074-0506-2023-15-2-251-265

2. Hassan M. etal. The dynamic influence of the DRB1*1101 allele on the resistance of sheep to experimental Teladorsagia circumcincta infection. Veterinary Research. 2011; 42: 46. https://doi.org/10.1186/1297-9716-42-46

3. Longeri M. et al. Association Between BoLA-DRB3.2 Polymorphism and Bovine Papillomavirus Infection for Bladder Tumor Risk in Podolica Cattle. Frontiers in Veterinary Science. 2021; 8: 630089. https://doi.org/10.3389/fvets.2021.630089

4. Portanier E. et al. Both candidate gene and neutral genetic diversity correlate with parasite resistance in female Mediterranean mouflon. BMC Ecology. 2019; 19: 12. https://doi.org/10.1186/s12898-019-0228-x

5. Esmailnejad A., Ganjiani V., Hosseini-Nasab E., Nazifi S. Association of Ovar-DRB1 alleles with innate immune responses in sheep. Veterinary Medicine and Science. 2022; 8(2): 752-757. https://doi.org/10.1002/vms3.683

6. Salim B. etal. Exploring genetic diversity and variation of Ovar-DRB1 gene in Sudan Desert Sheep using targeted next-generation sequencing. BMC Genomics. 2024; 25: 160. https://doi.org/10.1186/s12864-024-10053-3

7. Maccari G. et al. IPD-MHC 2.0: an improved inter-species database for the study of the major histocompatibility complex. Nucleic Acids Research. 2017; 45(D1): D860-D864. https://doi.org/10.1093/nar/gkw1050

8. Ellis S.A. et al. ISAG/IUIS-VIC Comparative MHC Nomenclature Committee report, 2005. Immunogenetics. 2006; 57(12): 953-958. https://doi.org/10.1007/s00251-005-0071-4

9. Radwan J., Babik W., Kaufman J., Lenz T.L., Winternitz J. Advances in the Evolutionary Understanding of MHC Polymorphism. Trends in Genetics. 2020; 36(4): 298-311. https://doi.org/10.1016/j.tig.2020.01.008

10. Robinson J., Barker D.J., Georgiou X., Cooper M.A., Flicek P., Marsh S.G.E. IPD-IMGT/HLA Database. Nucleic Acids Research. 2020; 48(D1): D948-D955. https://doi.org/10.1093/nar/gkz950

11. Vasoya D. et al. High throughput analysis of MHC-I and MHC-DR diversity of Brazilian cattle populations. HLA. 2021; 98(2): 93-113. https://doi.org/10.1111/tan.14339

12. Barker D.J. et al. The IPD-IMGT/HLA Database. Nucleic Acids Research. 2023; 51(D1): D1053-D1060. https://doi.org/10.1093/nar/gkac1011

13. Silwamba I. et al. High throughput analysis of MHC class I and class II diversity of Zambian indigenous cattle populations. HLA. 2023; 101(5): 458-483. https://doi.org/10.1111/tan.14976

14. Francisco R.d.S. et al. Differential haplotype expression in class I MHC genes during SARS-CoV-2 infection of human lung cell lines. Frontiers in Immunology. 2023; 13: 1101526. https://doi.org/10.3389/fimmu.2022.1101526

15. Ballingall K.T., Herrmann-Hoesing L., Robinson J., Marsh S.G.E., Stear M.J. A single nomenclature and associated database for alleles at the major histocompatibility complex class II DRB1 locus of sheep. Tissue Antigens. 2011; 77(6): 543-556. https://doi.org/10.1111/j.1399-0039.2011.01637.x

16. Marsh S.G.E. et al. Nomenclature for factors of the HLA system, 2010. Tissue Antigens. 2010; 75(4): 291-455. https://doi.org/10.1111/j.1399-0039.2010.01466.x

17. Millot P Genetic control of lymphocyte antigens in sheep: The OLA complex and two minor loci. Immunogenetics. 1979; 9: 509-534. https://doi.org/10.1007/BF01570447

18. Millot P The OLA major histocompatibility complex of sheep. Study of six new factors and evidence of a third locus of the complex OLA-C. Experimental and Clinical Immunogenetics. 1984; 1(1): 31-42.

19. Chardon P et al. Analysis of the sheep MHC using HLA class I, class II and C4 cDNA probes. Immunogenetics. 1985; 22(4): 349-358. https://doi.org/10.1007/BF00430918

20. Hediger R. Die in situ hybridisierung zur genkartierung beim rind und schaf. Ph.D. Thesis. Zurich: Eidgenossischen Technischen Hochschule. 1988; 163 (in German).

21. Hediger R., Ansari H.A., Stranzinger G.F. Chromosome banding and gene localizations support extensive conservation of chromosome structure between cattle and sheep. Cytogenetics and Cell Genetics. 1991; 57(2-3): 127-134. https://doi.org/10.1159/000133131

22. Mahdy E.A. Makinen A., Chowdhary B.P, Andersson L., Gustavsson I. Chromosomal localization of the ovine major histocompatibility complex (OLA) by in situ hybridization. Hereditas. 1989; 111(1): 87-90. https://doi.org/10.1111/j.1601-5223.1989.tb00381.x

23. Miltiadou D., Ballingall K.T., Ellis S.A., Russel G.C., McKeever D.J. Haplotype characterization of transcribed ovine major histocompatibility complex (MHC) class I genes. Immunogenetics. 2005; 57(7): 499-509. https://doi.org/10.1007/s00251-005-0008-y

24. Vasoya D., Connelley T., Tzelos T., Todd H., Ballingall K.T. Large scale transcriptional analysis of MHC class I haplotype diversity in sheep. HLA. 2024; 103(2): e15356. https://doi.org/10.1111/tan.15356

25. Bay V., Kele? M., Aymaz R., Hatipoglu E., Oner Y, Yaman Y Documentation of extensive genetic diversity in the Ovar-DRB1 gene in native Turkish sheep. Animal Biotechnology. 2021; 32(4): 507-518. https://doi.org/10.1080/10495398.2021.1884086

26. Ali A.O.A. et al. Association of MHC class II haplotypes with reduced faecal nematode egg count and IgA activity in British Texel sheep. Parasite Immunology. 2019; 41(7): e12626. https://doi.org/10.1111/pim.12626

27. Stear A. et al. Identification of the amino acids in the Major Histocompatibility Complex class II region of Scottish Blackface sheep that are associated with resistance to nematode infection. International Journal for Parasitology. 2019; 49(10): 797-804. https://doi.org/10.1016Zj.ijpara.2019.05.003

28. Stear M., Preston S., Piedrafita D., Donskow-Lysoniewska K. The Immune Response to Nematode Infection. International Journal of Molecular Sciences. 2023; 24(3): 2283. https://doi.org/10.3390/ijms24032283

29. Yaman Y et al. A novel 2 bp deletion variant in Ovine-DRB1 gene is associated with increased Visna/maedi susceptibility in Turkish sheep. Scientific Reports. 2021; 11: 14435. https://doi.org/10.1038/s41598-021-93864-8

30. Marzanov N.S., Nasibov M.G., Ozerov M.Yu., Kantanen Yu. Allelofond of Various Sheep Breeds by Microsatellites. Dubrovitsy: 11-y FORMAT. 2004; 119 (in Russian). https://elibrary.ru/vvtaik

31. Marzanov N.S. et al. Evolution and genetic technology in fine-wool sheep breeding. Moscow: Rosinformagrotech. 2012; 174 (in Russian). ISBN 978-5-7367-0909-0 https://elibrary.ru/qlctsd

32. Moiseykina L.G., Marzanov N.S., Marzanova S.N. Sheep breeding using genetic markers. Elista: Kalmyk State University named after B.B. Gorodovikov. 2013; 100 (in Russian). https://elibrary.ru/virmin

33. Zhang M. et al. Y-chromosome haplotype diversity of domestic sheep (Ovis aries) in northern Eurasia. Animal Genetics. 2014; 45(6): 903-907. https://doi.org/10.1111/age.12214

34. Marzanov N.S. et al. The Significance of a Multilocus Analysis for Assessing the Biodiversity of the Romanov Sheep Breed in a Comparative Aspect. Animals. 2023; 13(8): 1320. https://doi.org/10.3390/ani13081320

35. Geldermann H., Mir M.R., Kuss A.W., Bartenschlager H. OLA-DRB1 microsatellite variants are associated with ovine growth and reproduction traits. Genetics Selection Evolution. 2006; 38: 431. https://doi.org/10.1186/1297-9686-38-4-431

36. Wang K. et al. MHC-DRB1 exon 2 polymorphism and its association with mycoplasma ovipneumonia resistance or susceptibility genotypes in sheep. Journal of Genetics. 2020; 99: 22. https://doi.org/10.1007/s12041-020-1175-1

37. Huang W., Dicks K.L., Hadfield J.D., Johnston S.E., Ballingall K.T., Pemberton J.M. Contemporary selection on MHC genes in a free-living ruminant population. Ecology Letters. 2022; 25(4): 828-838. https://doi.org/10.1111/ele.13957

38. Gowane G.R. et al. Cross-population genetic analysis revealed genetic variation and selection in the Ovar-DRB1 gene of Indian sheep breeds. Animal Biotechnology. 2023; 34(7): 2928-2939. https://doi.org/10.1080/10495398.2022.2125404

39. Gowane G.R. et al. Population-wide genetic analysis of Ovar-DQA1 and DQA2 loci across sheep breeds in India revealed their evolutionary importance and fitness of sheep in a tropical climate. Animal Biotechnology. 2023; 34(9): 4645-4657. https://doi.org/10.1080/10495398.2023.2180010


Review

For citations:


Marzanova S.N., Devrishov D.A., Fatakhov K.F., Marzanov N.S. Status of research on the major histocompatibility complex (OLA) in sheep. Agrarian science. 2025;1(1):93-99. (In Russ.) https://doi.org/10.32634/0869-8155-2025-390-01-93-99

Views: 105


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0869-8155 (Print)
ISSN 2686-701X (Online)
X