Preview

Agrarian science

Advanced search

Assessing the applicability of 3D time-of-flight cameras for digital monitoring of cow exterior

https://doi.org/10.32634/0869-8155-2025-393-04-145-152

Abstract

Currently, the process of collecting linear parameters of cow exterior is mainly carried out manually, which is a labor-intensive, complex process that depends on the skills of a veterinarian. For fast and accurate grading, it is proposed to develop an intelligent system for contactless digital assessment of the exterior of cattle based on the use of video cameras and modern image analysis technologies. Such monitoring will also allow for the diagnosis of diseases and their early detection.

The purpose of the study is to compare two such cameras and determine their applicability in the system being developed.

We used a laboratory stand with a large number of objects at a predetermined distance from the cameras, specially developed software for processing the results and constructing a linear regression linking the real distance with the measured one. A special adjustment has been developed to reduce the camera error. As a result, it was determined that both cameras of this type have an average error of ±5 mm when measuring objects at a distance of 382 to 671 mm, taking images with an aperture of up to 60 × 45° and a resolution of up to 480 × 480 pixels. It was concluded that the error of both cameras is acceptable for equipping the system under development, not exceeding 2% per 1 m.

About the Authors

S. S. Yurochka
Federal Scientific Agroengineering Center VIM
Russian Federation

Sergey Sergeevich Yurochka, Candidate of Engineering Sciences, Senior Researcher

5 1st Institutsky Passage, Moscow, 109428



D. Yu. Pavkin
Federal Scientific Agroengineering Center VIM
Russian Federation

Dmitry Yuryevich Pavkin, Candidate of Technical Sciences, Senior Researcher

5 1st Institutsky Passage, Moscow, 109428



A. R. Khakimov
Federal Scientific Agroengineering Center VIM
Russian Federation

Artyom Rustamovich Khakimov, Junior Researcher

5 1st Institutsky Passage, Moscow, 109428



P. S. Berdyugin
Federal Scientific Agroengineering Center VIM
Russian Federation

Pavel Sergeevich Berdyugin, Junior Researcher

5 1st Institutsky Passage, Moscow, 109428



S. O. Bazaev
Federal Scientific Agroengineering Center VIM
Russian Federation

Savr Olegovich Bazaev, Candidate of Agricultural Sciences, Research Associate

5 1st Institutsky Passage, Moscow, 109428



F. E. Vladimirov
Federal Scientific Agroengineering Center VIM
Russian Federation

Fyodor Evgenievich Vladimirov, Researcher

5 1st Institutsky Passage, Moscow, 109428



References

1. Лобачевский Я.П., Дорохов А.С. Цифровые технологии и роботизированные технические средства для сельского хозяйства. Сельскохозяйственные машины и роботизированные технические средства для сельского хозяйства. Сельскохозяйственные машины и технологии. 2021; 15(4): 6-10. https://doi.org/10.22314/2073-7599-2021-15-4-6-10

2. Ценч Ю.С. Научно-технический потенциал как главный фактор развития механизации сельского хозяйства. Сельскохозяйственные машины и технологии. 2022; 16(2): 4-13. https://doi.org/10.22314/2073-7599-2022-16-2-4-13

3. Кирсанов В.В., Владимиров Ф.Е., Павкин Д.Ю., Рузин С.С., Юрочка С.С. Сравнительный анализ и подбор систем мониторинга здоровья КРС. ВестникВНИИМЖ. 2019; (1): 27-31. https://elibrary.ru/zaiqzn

4. Anderson D.M., Estell R.E., Cibils A.F. Spatiotemporal Cattle Data — A Plea for Protocol Standardization. Positioning. 2013; 4(1): 115-136. https://doi.org/10.4236/pos.2013.41012

5. Павкин Д.Ю., Юрочка С.С., Хакимов А.Р, Довлатов И.М. Разработка модульной системы цифровизации бонитировочных работ. Сельскохозяйственные машины и технологии. 2022; 16(4): 54-59. https://doi.org/10.22314/2073-7599-2022-16-4-54-59

6. Alem H. The Role of Technical Efficiency Achieving Sustainable Development: A Dynamic Analysis of Norwegian Dairy Farms. Sustainability. 2021; 13(4): 1841. https://doi.org/10.3390/su13041841

7. Батанов С.Д., Баранова И.А., Старостина О.С. Модель прогнозирования молочной продуктивности коров по их экстерьерным особенностям. Вестник Башкирского государственного аграрного университета. 2019; (1): 55-62. https://doi.org/10.31563/1684-7628-2019-49-1-55-62

8. Харченко А.В., Фейзуллаев Ф.Р, Лепехина Т.В. Экстерьерные особенности казахской белоголовой породы крупного рогатого скота. Инновационная наука. 2022; (6-1): 62-64. https://elibrary.ru/hchsjb

9. Чиндалиев А.Е., Калимолдинова А.С., Алипов А.У., Баймуканов А.Д. Использование линейной оценки экстерьера коров. Главный зоотехник. 2019; (8): 32-38. https://elibrary.ru/hycfxa

10. Ситдиков Ф.Ф., Цой Ю.А., Зиганшин Б.Г. Основные направления и проблемы цифровизации агропромышленного комплекса. Вестник Казанского государственного аграрного университета. 2019; 14(3): 112-115. https://doi.org/10.12737/article_5db97473887137.67106533

11. Shi C., Zhang J., Teng G. Mobile measuring system based on LabVIEW for pig body components estimation in a large-scale farm. Computers and Electronics in Agriculture. 2019; 156: 399-405. https://doi.org/10.1016/j.compag.2018.11.042

12. Башилов А.М., Королев В.А. Видеоцифровое системнометрическое управление агротехнологическими процессами. Вестник аграрной науки Дона. 2019; (4): 68-75. https://elibrary.ru/vsyvcn

13. Buller H., Blokhuis H., Lokhorst K., Silberberg M., Veissier I. Animal Welfare Management in a Digital World. Animals. 2020; 10(10): 1779. https://doi.org/10.3390/ani10101779

14. Xue T. etal. One-Shot Learning-Based Animal Video Segmentation. IEEE Transactions on Industrial Informatics. 2022; 18(6): 3799-3807. https://doi.org/10.1109/TN.2021.3117020

15. Власенкова Т.А., Козырева Ю.Ю. Цифровизация как основа эффективного ведения сельского хозяйства. Менеджмент в АПК. 2021; (2): 11-16. https://elibrary.ru/nttevs

16. Zou Z., Chen K., Shi Z., Guo Y, Ye J. Object Detection in 20 Years: A Survey. Proceedings of the IEEE. 2023; 111(3): 257-276. https://doi.org/10.1109/JPROC.2023.3238524

17. Jones J.W. et al. Toward a new generation of agricultural system data, models, and knowledge products: State of agricultural systems science. Agricultural Systems. 2017; 155: 269-288. https://doi.org/10.1016Zj.agsy.2016.09.021

18. Qiao Y, Kong H., Clark C., Lomax S., Su D., Eiffert S., Sukkarieh S. Intelligent Perception-Based Cattle Lameness Detection and Behaviour Recognition: A Review. Animals. 2021; 11(11): 3033. https://doi.org/10.3390/ani11113033


Review

For citations:


Yurochka S.S., Pavkin D.Yu., Khakimov A.R., Berdyugin P.S., Bazaev S.O., Vladimirov F.E. Assessing the applicability of 3D time-of-flight cameras for digital monitoring of cow exterior. Agrarian science. 2025;1(4):145-152. (In Russ.) https://doi.org/10.32634/0869-8155-2025-393-04-145-152

Views: 45


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0869-8155 (Print)
ISSN 2686-701X (Online)
X