Preview

Аграрная наука

Расширенный поиск

Послеотельные отклонения у коров и первотелок и способы их коррекции

https://doi.org/10.32634/0869-8155-2025-399-10-45-57

Аннотация

Представлен научный анализ современных зарубежных публикаций по изучению послеотельных отклонений у коров и первотелок и способов их коррекции. Учитывая, что отечественные публикации по данной теме находятся в свободном доступе, было решено подготовить обзор по проблемам на основании данных зарубежных статей.

В обзоре нашли свое отражение публикации, которые показывают, как этиологический фактор влияет на послеотельные отклонения у коров и первотелок. Обращено внимание на факторы, вызывающие различные послеотельные осложнения — гипокальциемию, кетоз, задержание последа, болезни матки, которые впоследствии снижают эффективность воспроизводства, молочную продуктивность, продуктивное долголетие в стадах. Основные меры профилактики этих отклонений на основании исследований зарубежных авторов описаны в данном обзоре.

Данный обзор позволяет читателям расширить познания по проблемам у животных после отела, а именно учитывать некоторые физиологические изменения, которые в той или иной степени могут стать причиной развития различных отклонений, а также позволит практикам применять методы профилактики и коррекции этих осложнений до развития тяжелых и необратимых последствий.

Об авторах

А. В. Устименко
Федеральный исследовательский центр животноводства — ВИЖ им. академика Л.К. Эрнста
Россия

Анна Владимировна Устименко - аспирант,

пос. Дубровицы, 60, г. о. Подольск, Московская обл., 142132



А. И. Абилов
Федеральный исследовательский центр животноводства — ВИЖ им. академика Л.К. Эрнста
Россия

Ахмедага Имаш оглы Абилов - доктор биологических наук, профессор, заслуженный
деятель науки Российской Федерации, главный научный сотрудник,

пос. Дубровицы, 60, г. о. Подольск, Московская обл., 142132



П. Л. Козменков
ООО «Альта НН»
Россия

Пётр Львович Козменков - кандидат биологических наук, руководитель отдела научного планирования,

ул. Невская, 19А, Нижний Новгород, 603009



Список литературы

1. Абилов А.И. (ред.). Некоторые аспекты воспроизводства крупного рогатого скота. СПб.: Проспект науки. 2019; 302. ISBN 978-5-906109-91-0 https://elibrary.ru/mosbhn

2. Caixeta L.S., Omontese B.O. Monitoring and Improving the Metabolic Health of Dairy Cows during the Transition Period. Animals. 2021; 11(2): 352. https://doi.org/10.3390/ani11020352

3. Стрекозов Н.И. Сивкин Н.И. Продуктивное долголетие коров при голштинизации черно-пестрого скота. Генетика и разведение животных. 2014; (2): 11–16. https://elibrary.ru/umyhlp

4. Фролова Е.М., Абилов А.И., Шамшидин А.С. Профилактика гинекологических заболеваний коров с использованием нового протокола и расчет эффективности его применения. Генетика и разведение животных. 2022; (1): 54–61. https://doi.org/10.31043/2410-2733-2022-1-54-61

5. LeBlanc S. Monitoring Metabolic Health of Dairy Cattle in the Transition Period. Journal of Reproduction and Development. 2010; 56(S): S29–S35. https://doi.org/10.1262/jrd.1056S29

6. Sordillo L.M. Nutritional strategies to optimize dairy cattle immunity. Journal of Dairy Science. 2016; 99(6): 4967–4982. https://doi.org/10.3168/jds.2015-10354

7. Ribeiro E.S., Carvalho M.R. Impact and mechanisms of inflammatory diseases on embryonic development and fertility in cattle. Animal Reproduction. 2018; 14(3): 589–600. http://doi.org/10.21451/1984-3143-AR1002

8. Sheldon I.M., Cronin J., Goetze L., Donofrio G., Schuberth H.-J. Defining Postpartum Uterine Disease and the Mechanisms of Infection and Immunity in the Female Reproductive Tract in Cattle. Biology of Reproduction. 2009; 81(6): 1025–1032. https://doi.org/10.1095/biolreprod.109.077370

9. Gröhn Y.T., Rajala-Schultz P.J., Allore H.G., DeLorenzo M.A., Hertl J.A., Galligan D.T. Optimizing replacement of dairy cows: modeling the effects of diseases. Preventive Veterinary Medicine. 2003; 61(1): 27–43. https://doi.org/10.1016/S0167-5877(03)00158-2

10. Mormède P. et al. Exploration of the hypothalamic-pituitaryadrenal function as a tool to evaluate animal welfare. Physiology & Behavior. 2007; 92(3): 317–339. https://doi.org/10.1016/j.physbeh.2006.12.003

11. Civelek T., Celik H.A., Avci G., Cingi C.C. Effects of dystocia on plasma cortisol and cholesterol levels in Holstein heifers and their newborn calves. Bulletin of the Veterinary Institute in Puławy. 2008; 52(4): 649–654.

12. Kovács L., Kézér F.L., Szenci O. Effect of calving process on the outcomes of delivery and postpartum health of dairy cows with unassisted and assisted calvings. Journal of Dairy Science. 2016; 99(9): 7568–7573. https://doi.org/10.3168/jds.2016-11325

13. Hoedemaker M., Prange D., Gundelach Y. Body Condition Change Ante- and Postpartum, Health and Reproductive Performance in German Holstein Cows. Reproduction in Domestic Animals. 2009; 44(2): 167–173. https://doi.org/10.1111/j.1439-0531.2007.00992.x

14. Chebel R.C., Mendonça L.G.D., Baruselli P.S. Association between body condition score change during the dry period and postpartum health and performance. Journal of Dairy Science. 2018; 101(5): 4595–4614. https://doi.org/10.3168/jds.2017-13732

15. Roche J.R., Friggens N.C., Kay J.K., Fisher M.W., Stafford K.J., Berry D.P. Invited review: Body condition score and its association with dairy cow productivity, health, and welfare. Journal of Dairy Science. 2009; 92(12): 5769–5801. https://doi.org/10.3168/jds.2009-2431

16. Pérez-Báez J. et al. Investigating the Use of Dry Matter Intake and Energy Balance Prepartum as Predictors of Digestive Disorders Postpartum. Frontiers in Veterinary Science. 2021; 8: 645252. https://doi.org/10.3389/fvets.2021.645252

17. Janovick N.A., Boisclair Y.R., Drackley J.K. Prepartum dietary energy intake affects metabolism and health during the periparturient period in primiparous and multiparous Holstein cows. Journal of Dairy Science. 2011; 94(3): 1385–1400. https://doi.org/10.3168/jds.2010-3303

18. LeBlanc S.J., Lissemore K.D., Kelton D.F., Duffield T.F., Leslie K.E. Major Advances in Disease Prevention in Dairy Cattle. Journal of Dairy Science. 2006; 89(4): 1267–1279. https://doi.org/10.3168/jds.S0022-0302(06)72195-6

19. Seifi H.A., Kia S. Subclinical Hypocalcemia in Dairy Cows: Pathophysiology, Consequences and Monitoring. Iranian Journal of Veterinary Science and Technology. 2017; 9(2): 1–15. https://doi.org/10.22067/veterinary.v9i2.69198

20. Bhanugopan M.S., Lievaart J. Survey on the occurrence of milk fever in dairy cows and the current preventive strategies adopted by farmers in New South Wales, Australia. Australian Veterinary Journal. 2014; 92(6): 200–205. https://doi.org/10.1111/avj.12183

21. Houe H. et al. Milk fever and subclinical hypocalcaemia — An evaluation of parameters on incidence risk, diagnosis, risk factors and biological effects as input for a decision support system for disease control. Acta Veterinaria Scandinavica. 2001; 42(1): 1–29.

22. Reinhardt T.A., Lippolis J.D., McCluskey B.J., Goff J.P., Horst R.L. Prevalence of subclinical hypocalcemia in dairy herds. The Veterinary Journal. 2011; 188(1): 122–124. https://doi.org/10.1016/j.tvjl.2010.03.025

23. Семенов В.Г. и др. Профилактика субклинических форм кетоза и гипокальциемии молочных коров. Аграрная наука. 2022; (11): 29–35. https://doi.org/10.32634/0869-8155-2022-364-11-29-35

24. Venjakob P.L., Pieper L., Heuwieser W., Borchardt S. Association of postpartum hypocalcemia with early-lactation milk yield, reproductive performance, and culling in dairy cows. Journal of Dairy Science. 2018; 101(10): 9396–9405. https://doi.org/10.3168/jds.2017-14202

25. Han P., Trinidad B.J., Shi J. Hypocalcemia-Induced Seizure: Demystifying the Calcium Paradox. ASN Neuro. 2015; 7(2): 1759091415578050. https://doi.org/10.1177/1759091415578050

26. Martinez N. et al. Effect of induced subclinical hypocalcemia on physiological responses and neutrophil function in dairy cows. Journal of Dairy Science. 2014; 97(2): 874–887. https://doi.org/10.3168/jds.2013-7408

27. Oetzel G.R. Monitoring and testing dairy herds for metabolic disease. Veterinary Clinics of North America: Food Animal Practice. 2004; 20(3): 651–674. https://doi.org/10.1016/j.cvfa.2004.06.006

28. Caixeta L.S., Ospina P.A., Capel M.B., Nydam D.V. Association between subclinical hypocalcemia in the first 3 days of lactation and reproductive performance of dairy cows. Theriogenology. 2017; 94: 1–7. https://doi.org/10.1016/j.theriogenology.2017.01.039

29. Rodríguez E.M., Arís A., Bach A. Associations between subclinical hypocalcemia and postparturient diseases in dairy cows. Journal of Dairy Science. 2017; 100(9): 7427–7434. https://doi.org/10.3168/jds.2016-12210

30. Wilkens M.R., Nelson C.D., Hernandez L.L., McArt J.A. Symposium review: Transition cow calcium homeostasis—Health effects of hypocalcemia and strategies for prevention. Journal of Dairy Science. 2020; 103(3): 2909–2927. https://doi.org/10.3168/jds.2019-17268

31. Kerwin A.L. et al. Effects of feeding synthetic zeolite A during the prepartum period on serum mineral concentration, oxidant status, and performance of multiparous Holstein cows. Journal of Dairy Science. 2019; 102(6): 5191–5207. https://doi.org/10.3168/jds.2019-16272

32. Lean I.J., DeGaris P.J., Celi P., McNeill D.M., Rodney R.M., Fraser D.R. Influencing the future: interactions of skeleton, energy, protein and calcium during late gestation and early lactation. Animal Production Science. 2014; 54(9): 1177–1189. https://doi.org/10.1071/AN14479

33. Lean I.J., DeGaris P.J., McNeil D.M., Block E. Hypocalcemia in Dairy Cows: Meta-analysis and Dietary Cation Anion Difference Theory Revisited. Journal of Dairy Science. 2006; 89(2): 669–684. https://doi.org/10.3168/jds.S0022-0302(06)72130-0

34. Santos J.E.P., Lean I.J., Golder H., Block E. Meta-analysis of the effects of prepartum dietary cation-anion difference on performance and health of dairy cows. Journal of Dairy Science. 2019; 102(3): 2134–2154. https://doi.org/10.3168/jds.2018-14628

35. Herm G., Muscher-Banse A.S., Breves G., Schröder B., Wilkens M.R. Renal mechanisms of calcium homeostasis in sheep and goats. Journal of Animal Science. 2015; 93(4): 1608–1621. https://doi.org/10.2527/jas.2014-8450

36. Zimpel R. et al. Effect of dietary cation-anion difference on acidbase status and dry matter intake in dry pregnant cows. Journal of Dairy Science. 2018; 101(9): 8461–8475. https://doi.org/10.3168/jds.2018-14748

37. Disthabanchong S., Martin K.J., McConkey C.L., Gonzalez E.A. Metabolic acidosis up-regulates PTH/PTHrP receptors in UMR 106-01 osteoblast-like cells. Kidney International. 2002; 62(4): 1171–1177. https://doi.org/10.1111/j.1523-1755.2002.kid568.x

38. Goff J.P., Liesegang A., Horst R.L. Diet-induced pseudohypoparathyroidism: A hypocalcemia and milk fever risk factor. Journal of Dairy Science. 2014; 97(3): 1520–1528. https://doi.org/10.3168/jds.2013-7467

39. Vieira-Neto A. et al. Effect of duration of exposure to diets differing in dietary cation-anion difference on Ca metabolism after a parathyroid hormone challenge in dairy cows. Journal of Dairy Science. 2021; 104(1): 1018–1038. https://doi.org/10.3168/jds.2020-19127

40. Rodney R.M. et al. Effects of prepartum dietary cation-anion difference and source of vitamin D in dairy cows: Vitamin D, mineral, and bone metabolism. Journal of Dairy Science. 2018; 101(3): 2519–2543. https://doi.org/10.3168/jds.2017-13737

41. Miltenburg C.L., Duffield T.F., Bienzle D., Scholtz E.L., LeBlanc S.J. Randomized clinical trial of a calcium supplement for improvement of health in dairy cows in early lactation. Journal of Dairy Science. 2016; 99(8): 6550–6562. https://doi.org/10.3168/jds.2016-10961

42. Domino A.R., Korzec H.C., McArt J.A.A. Field trial of 2 calcium supplements on early lactation health and production in multiparous Holstein cows. Journal of Dairy Science. 2017; 100(12): 9681–9690. https://doi.org/10.3168/jds.2017-12885

43. Blanc C.D., Van der List M., Aly S.S., Rossow H.A., Silva-del-Río N. Blood calcium dynamics after prophylactic treatment of subclinical hypocalcemia with oral or intravenous calcium. Journal of Dairy Science. 2014; 97(11): 6901–6906. https://doi.org/10.3168/jds.2014-7927

44. Wilms J., Wang G., Doelman J., Jacobs M., Martín-Tereso J. Intravenous calcium infusion in a calving protocol disrupts calcium homeostasis compared with an oral calcium supplement. Journal of Dairy Science. 2019; 102(7): 6056 –6064. https://doi.org/10.3168/jds.2018-15754

45. Laven R.A., Peters A.R. Bovine retained placenta: aetiology, pathogenesis and economic loss. Veterinary Record. 1996; 139(19): 465–471. https://doi.org/10.1136/vr.139.19.465

46. Amin Y.A., Hussein H.A. Latest update on predictive indicators, risk factors and ‘Omic’ technologies research of retained placenta in dairy cattle — A review. Reproduction in Domestic Animals. 2022; 57(7): 687–700. https://doi.org/10.1111/rda.14115

47. Dervishi E., Zhang G., Hailemariam D., Dunn S.M., Ametaj B.N. Occurrence of retained placenta is preceded by an inflammatory state and alterations of energy metabolism in transition dairy cows. Journal of Animal Science and Biotechnology. 2016; 7: 26. https://doi.org/10.1186/s40104-016-0085-9

48. Ghavi Hossein-Zadeh N., Ardalan M. Cow-specific risk factors for retained placenta, metritis and clinical mastitis in Holstein cows. Veterinary Research Communications. 2011; 35(6): 345–354. https://doi.org/10.1007/s11259-011-9479-5

49. Bicalho R.C., Galvão K.N., Cheong S.H., Gilbert R.O., Warnick L.D., Guard C.L. Effect of Stillbirths on Dam Survival and Reproduction Performance in Holstein Dairy Cows. Journal of Dairy Science. 2007; 90(6): 2797–2803. https://doi.org/10.3168/jds.2006-504

50. Mahnani A., Sadeghi-Sefidmazgi A., Ansari-Mahyari S., Ghorbani G.-R. Assessing the consequences and economic impact of retained placenta in Holstein dairy cattle. Theriogenology. 2021; 175: 61–68. https://doi.org/10.1016/j.theriogenology.2021.08.036

51. Бурков П.В., Щербаков П.Н., Ребезов М.Б. Использование препарата «Овостим-цт» при профилактике гепатозов и задержаний последа у коров после отела. Аграрная наука. 2022; (7–8): 44–48. https://doi.org/10.32634/0869-8155-2022-361-7-8-44-48

52. Melendez P., Donovan G.A., Risco C.A., Goff J.P. Plasma mineral and energy metabolite concentrations in dairy cows fed an anionic prepartum diet that did or did not have retained fetal membranes after parturition. American Journal of Veterinary Research. 2004; 65(8): 1071–1076. https://doi.org/10.2460/ajvr.2004.65.1071

53. Goff J.P. Major Advances in Our Understanding of Nutritional Influences on Bovine Health. Journal of Dairy Science. 2006; 89(4): 1292–1301. https://doi.org/10.3168/jds.S0022-0302(06)72197-X

54. Han Y.-K., Kim I.-H. Risk factors for retained placenta and the effect of retained placenta on the occurrence of postpartum diseases and subsequent reproductive performance in dairy cows. Journal of Veterinary Science. 2005; 6(1): 53–59.

55. LeBlanc S.J. Interactions of Metabolism, Inflammation, and Reproductive Tract Health in the Postpartum Period in Dairy Cattle. Reproduction in Domestic Animals. 2012; 47(S5): 18–30. https://doi.org/10.1111/j.1439-0531.2012.02109.x

56. Drillich M., Mahlstedt M., Reichert U., Tenhagen B.A., Heuwieser W. Strategies to Improve the Therapy of Retained Fetal Membranes in Dairy Cows. Journal of Dairy Science. 2006; 89(2): 627–635. https://doi.org/10.3168/jds.S0022-0302(06)72126-9

57. Eiler H., Hopkins F.M. Bovine Retained Placenta: Effects of Collagenase and Hyaluronidase on Detachment of Placenta. Biology of Reproduction. 1992; 46(4): 580–585. https://doi.org/10.1095/biolreprod46.4.580

58. Drillich M., Reichert U., Mahlstedt M., Heuwieser W. Comparison of Two Strategies for Systemic Antibiotic Treatment of Dairy Cows with Retained Fetal Membranes: Preventive vs. Selective Treatment. Journal of Dairy Science. 2006; 89(5): 1502–1508. https://doi.org/10.3168/jds.S0022-0302(06)72217-2

59. Bolinder A., Seguin B., Kindahl H., Bouley D., Otterby D. Retained fetal membranes in cows: Manual removal versus nonremoval and its effect on reproductive performance. Theriogenology. 1988; 30(1): 45–56. https://doi.org/10.1016/0093-691X(88)90262-2

60. Frazer G.S. A Rational Basis for Therapy in the Sick Postpartum Cow. Veterinary Clinics of North America: Food Animal Practice. 2005; 21(2): 523–568. https://doi.org/10.1016/j.cvfa.2005.03.005

61. Tucho T.T. Review on Retention of Placenta in Dairy Cows and it is Economic and Reproductive Impacts. Journal of Natural Sciences Research. 2017; 7(7): 28–37.

62. Allison R.D., Laven R.A. Effect of vitamin E supplementation on the health and fertility of dairy cows: a review. Veterinary Record. 2000; 147(25): 703–708. https://doi.org/10.1136/vr.147.25.703

63. Bourne N., Laven R., Wathes D.C., Martinez T., McGowan M. A meta-analysis of the effects of Vitamin E supplementation on the incidence of retained foetal membranes in dairy cows. Theriogenology. 2007; 67(3): 494–501. https://doi.org/10.1016/j.theriogenology.2006.08.015

64. LeBlanc S.J. Review: Postpartum reproductive disease and fertility in dairy cows. Animal. 2023; 17(S1): 100781. https://doi.org/10.1016/j.animal.2023.100781

65. Galvão K.N. Uterine diseases in dairy cows: understanding the causes and seeking solutions. Animal Reproduction. 2013; 10(3): 228–238

66. Negasee K.A. Clinical Metritis and Endometritis in Diary Cattle: A Review. Veterinary Medicine - Open Journal. 2020; 5(2): 51–56.

67. Giuliodori M.J., Magnasco R.P., Becu-Villalobos D., Lacau-Mengido I.M., Risco C.A., de la Sota R.L Metritis in dairy cows: Risk factors and reproductive performance. Journal of Dairy Science. 2013; 96(6): 3621–3631. https://doi.org/10.3168/jds.2012-5922

68. Hoeben D. et al. Chemiluminescence of bovine polymorphonuclear leucocytes during the periparturient period and relation with metabolic markers and bovine pregnancy-associated glycoprotein. Journal of Dairy Research. 2000; 67(2): 249–259. https://doi.org/10.1017/S0022029900004052

69. Hammon D.S., Evjen I.M., Dhiman T.R., Goff J.P., Walters J.L. Neutrophil function and energy status in Holstein cows with uterine health disorders. Veterinary Immunology and Immunopathology. 2006; 113(1–2): 21–29. https://doi.org/10.1016/j.vetimm.2006.03.022

70. Moretti P., Probo M., Cantoni A., Paltrinieri S., Giordano A. Fluctuation of neutrophil counts around parturition in Holstein dairy cows with and without retained placenta. Research in Veterinary Science. 2016; 107: 207–212. https://doi.org/10.1016/j.rvsc.2016.06.015

71. Григорьева Т.Е., Сергеева Н.С. Обмен веществ у коров, больных эндометритом. Аграрная наука. 2017; (5): 25–26. https://elibrary.ru/ysvnot

72. Dohmen M.J.W., Joop K., Sturk A., Bols P.E.J., Lohuis J.A.C.M. Relationship between intra-uterine bacterial contamination, endotoxin levels and the development of endometritis in postpartum cows with dystocia or retained placenta. Theriogenology. 2000; 54(7): 1019–1032. https://doi.org/10.1016/S0093-691X(00)00410-6

73. Handelsman J. Metagenomics: Application of Genomics to Uncultured Microorganisms. Microbiology and Molecular Biology Reviews. 2004; 68(4): 669–685. https://doi.org/10.1128/mmbr.68.4.669-685.2004

74. Луцай В.И., Солошенко Н.Ю., Нефедов А.М., Сибирцев В.Д., Руденко А.А., Руденко П.А. Микробный пейзаж при остром гнойно-катаральном послеродовом эндометрите у коров. Аграрная наука. 2024; (3): 66–71. https://doi.org/10.32634/0869-8155-2024-380-3-66-71

75. Abdel-Latif M.A. et al. Impact of Supplementing Propylene Glycol and Calcium Propionate to Primiparous Buffalo Cows During the Late Gestation and Early Lactation Period on Reproductive Performance and Metabolic Parameters. Alexandria Journal of Veterinary Sciences. 2016; 51(1): 114–121. https://doi.org/10.5455/ajvs.240341

76. Нежданов А.Г., Шабунин С.В., Михалев В.И., Филин В.В., Скориков В.Н. Послеродовой метрит у молочных коров. Ветеринария. 2016; (8): 3–10. https://elibrary.ru/wjczdn

77. Adnane M., Kaidi R., Hanzen C., England G.C.W. Risk factors of clinical and subclinical endometritis in cattle: a review. Turkish Journal of Veterinary & Animal Sciences. 2017; 41(1): 1–11. https://doi.org/10.3906/vet-1603-63

78. Dawod A., Min B.R. Effect of puerperal metritis on Holstein cows productive, reproductive variables and culling rates. American Journal of Animal and Veterinary Sciences. 2014; 9(3): 162–169. https://doi.org/10.3844/ajavsp.2014.162.169

79. Benzaquen M.E., Risco C.A., Archbald L.F., Melendez P., Thatcher M.-J., Thatcher W.W. Rectal Temperature, Calving-Related Factors, and the Incidence of Puerperal Metritis in Postpartum Dairy Cows. Journal of Dairy Science. 2007; 90(6): 2804–2814. https://doi.org/10.3168/jds.2006-482

80. Kumari S., Kumaresan A., Patbandha T.K., Ravi S.K. Risk Factors for Metritis and Its Effect on Productive and Reproductive Performance in Dairy Cattle and Buffaloes. Agricultural Research. 2016; 5(1): 72–80. https://doi.org/10.1007/s40003-015-0183-5

81. Yáñez U., Herradón P.G., Becerra J.J., Peña A.I., Quintela L.A. Relationship between Postpartum Metabolic Status and Subclinical Endometritis in Dairy Cattle. Animals. 2022; 12(3): 242. https://doi.org/10.3390/ani12030242

82. Лощинин С.О., Авдеенко В.С., Фирсов Г.М., Племяшов К.В., Никитин Г.С., Михалев В.И. Роль отрицательного энергетического баланса у коров после отела в патогенезе воспаления матки. Международный вестник ветеринарии. 2022; (1): 185–197. https://doi.org/10.52419/issn2072-2419.2022.1.185

83. Huzzey J.M., Duffield T.F., LeBlanc S.J., Veira D.M., Weary D.M., von Keyserlingk M.A.G. Short communication: Haptoglobin as an early indicator of metritis. Journal of Dairy Science. 2009; 92(2): 621–625. https://doi.org/10.3168/jds.2008-1526

84. Назаров М.В., Казаринов В.А. Факторы риска развития метрита у коров. Институциональные преобразования АПК России в условиях глобальных вызовов. Сборник тезисов по материалам V Международной конференции. Краснодар: Кубанский государственный аграрный университет им. И.Т. Трубилина. 2020; 25. https://elibrary.ru/aqpgaa

85. Williams E.J. et al. The relationship between uterine pathogen growth density and ovarian function in the postpartum dairy cow. Theriogenology. 2007; 68(4): 549–559. https://doi.org/10.1016/j.theriogenology.2007.04.056

86. Eckersall P.D. Recent advances and future prospects for the use of acute phase proteins as markers of disease in animals. Revue de medecine veterinaire. 2000; 151(7): 577–584.

87. Burfeind O., Sannmann I., Voigtsberger R., Heuwieser W. Receiver operating characteristic curve analysis to determine the diagnostic performance of serum haptoglobin concentration for the diagnosis of acute puerperal metritis in dairy cows. Animal Reproduction Science. 2014; 149(3–4): 145–151. https://doi.org/10.1016/j.anireprosci.2014.07.020

88. Ceciliani F., Ceron J.J., Eckersall P.D., Sauerwein H. Acute phase proteins in ruminants. Journal of Proteomics. 2012; 75(14): 4207–4231. https://doi.org/10.1016/j.jprot.2012.04.004

89. Nightingale C.R., Sellers M.D., Ballou M.A. Elevated plasma haptoglobin concentrations following parturition are associated with elevated leukocyte responses and decreased subsequent reproductive efficiency in multiparous Holstein dairy cows. Veterinary Immunology and Immunopathology. 2015; 164(1–2): 16–23. https://doi.org/10.1016/j.vetimm.2014.12.016

90. LeBlanc S.J., Osawa T., Dubuc J. Reproductive tract defense and disease in postpartum dairy cows. Theriogenology. 2011; 76(9): 1610–1618. https://doi.org/10.1016/j.theriogenology.2011.07.017

91. Красочко П.А., Снитко Т.В., Черных О.Ю. Повышение эффективности лечения коров, больных послеродовым эндометритом, с помощью аспарагиновой кислоты. Аграрная наука. 2021; (4S): 53–55. https://doi.org/10.32634/0869-8155-2021-347-4-53-55

92. Фролова Е.М., Абилов А.И., Ерин С.Н. Эффективность применения нового протокола для профилактики послеродовых осложнений у коров-первотелок голштинской породы. Генетика и разведение животных. 2020; (3): 91–98. https://doi.org/10.31043/2410-2733-2020-3-91-98

93. Hotamisligil G.S., Erbay E. Nutrient sensing and inflammation in metabolic diseases. Nature Reviews Immunology. 2008; 8(12): 923–934. https://doi.org/10.1038/nri2449

94. Majeed A.F., Aboud Q.M., Hassan M.S., Muhammad A.Y. Retained fetal membranes in Friesian-Holstein cows and effect of some treatment methods. Iraqi Journal of Veterinary Sciences. 2009; 23(S1): 5–8.

95. Opsomer G., de Kruif A. Metritis and endometritis in high yielding dairy cows. Vlaams Diergeneeskundig Tijdschrift. 2009; 78: 2.

96. Gustafsson H., Kornmatitsuk B., Königsson K., Kindahl H. Peripartum and early post-partum in the cow physiology and pathology. Medecin Veterinaire du Quebec. 2004; 34(1–2): 64–65.

97. Potter T.J., Guitian J., Fishwick J., Gordon P.J., Sheldon I.M. Risk factors for clinical endometritis in postpartum dairy cattle. Theriogenology. 2010; 74(1): 127–134. https://doi.org/10.1016/j.theriogenology.2010.01.023

98. Zhang G., Ametaj B.N. Ketosis an Old Story Under a New Approach. Dairy. 2020; 1(1): 42–60. https://doi.org/10.3390/dairy1010005

99. Baticz O., Tömösközi S., Vida L. Concentrations of citrate and ketone bodies in cow’s raw milk. Periodica Polytechnica Chemical Engineering. 2002; 46(1–2): 93–104.

100. Knowlton K.F., Dawson T.E., Glenn B.P., Huntington G.B., Erdman R.A. Glucose Metabolism and Milk Yield of Cows Infused Abomasally or Ruminally with Starch. Journal of Dairy Science. 1998; 81(12): 3248–3258. https://doi.org/10.3168/jds.S0022-0302(98)75889-8

101. Ковалев С.П., Киселенко П.С., Трушкин В.А., Никитина А.А. Показатели крови у больных кетозом коров. Актуальные проблемы инновационного развития животноводства. Международная научно-практическая конференция. Брянск: Брянский государственный аграрный университет. 2019; 86–89. https://elibrary.ru/lrzusy

102. Bačić G., Karadjole T., Mačešić N., Karadjole M. A brief review of etiology and nutritional prevention of metabolic disorders in dairy cattle. Veterinarski arhiv. 2007; 77(6): 567–577.

103. McDonald C.J., Blankenheim Z.J., Drewes L.R. Brain Endothelial Cells: Metabolic Flux and Energy Metabolism. Cader Z., Neuhaus W. (eds.). Physiology, Pharmacology and Pathology of the Blood-Brain Barrier. Cham: Springer. 2021; 59–79. https://doi.org/10.1007/164_2021_494

104. Raboisson D., Mounié M., Maigné E. Diseases, reproductive performance, and changes in milk production associated with subclinical ketosis in dairy cows: A meta-analysis and review. Journal of Dairy Science. 2014; 97(12): 7547–7563. https://doi.org/10.3168/jds.2014-8237

105. Đoković R. et al. Diagnosis of subclinical ketosis in dairy cows. Biotechnology in Animal Husbandry. 2019; 35(2): 111–125. https://doi.org/10.2298/BAH1902111D

106. Турлюн В.И. Внедрение экспресс-методов определения кетоза у коров в технологический процесс производства молока. Известия Санкт-Петербургского государственного аграрного университета. 2019; 54: 97–102. https://doi.org/10.24411/2078-1318-2019-11097

107. Benedet A., Manuelian C.L., Zidi A., Penasa M., De Marchi M. Invited review: β-hydroxybutyrate concentration in blood and milk and its associations with cow performance. Animal. 2019; 13(8): 1676–1689. https://doi.org/10.1017/S175173111900034X

108. Suthar V.S., Canelas-Raposo J., Deniz A., Heuwieser W. Prevalence of subclinical ketosis and relationships with postpartum diseases in European dairy cows. Journal of Dairy Science. 2013; 96(5): 2925–2938. https://doi.org/10.3168/jds.2012-6035

109. Gordon J.L., LeBlanc S.J., Duffield T.F. Ketosis Treatment in Lactating Dairy Cattle. Veterinary Clinics of North America: Food Animal Practice. 2013; 29(2): 433–445. https://doi.org/10.1016/j.cvfa.2013.03.001

110. Oetzel G.R. Herd-Level Ketosis — Diagnosis and Risk Factors. Preconference Seminar 7C: Dairy Herd Problem Investigation Strategies: Transition Cow Troubleshooting, American Association of Bovine Practitioners 40th Annual Conference. 2007; 67–91.

111. Guliński P. Ketone bodies — causes and effects of their increased presence in cows’ body fluids: A review. Veterinary World. 2021; 14(6): 1492–1503. https://doi.org/10.14202/vetworld.2021.1492-1503

112. Lei M.A.C., Simões J. Invited Review: Ketosis Diagnosis and Monitoring in High-Producing Dairy Cows. Dairy. 2021; 2(2): 303–325. https://doi.org/10.3390/dairy2020025

113. Cainzos J.M., Andreu-Vazquez C., Guadagnini M., Rijpert-Duvivier A., Duffield T. A systematic review of the cost of ketosis in dairy cattle. Journal of Dairy Science. 2022; 105(7): 6175–6195. https://doi.org/10.3168/jds.2021-21539

114. Pickett M.M., Piepenbrink M.S., Overton T.R. Effects of Propylene Glycol or Fat Drench on Plasma Metabolites, Liver Composition, and Production of Dairy Cows During the Periparturient Period. Journal of Dairy Science. 2003; 86(6): 2113–2121. https://doi.org/10.3168/jds.S0022-0302(03)73801-6

115. McArt J.A.A., Nydam D.V., Ospina P.A., Oetzel G.R. A field trial on the effect of propylene glycol on milk yield and resolution of ketosis in fresh cows diagnosed with subclinical ketosis. Journal of Dairy Science. 2011; 94(12): 6011–6020. https://doi.org/10.3168/jds.2011-4463

116. Saradhi K.P., Sandilya A., Sravya R.N.S., Vijayalakshmi P. Ketosis in dairy cattle: A comprehensive review. International Journal of Advanced Biochemistry Research. 2024; 8(12): 1008–1015. https://doi.org/10.33545/26174693.2024.v8.i12Sm.3264

117. Nordlund K.V. Creating the Physical Environment for Transition Cow Success. American Association of Bovine Practitioners Conference Proceedings. 2010; 43: 100–104. https://doi.org/10.21423/aabppro20104090

118. West J.W. Effects of Heat-Stress on Production in Dairy Cattle. Journal of Dairy Science. 2003; 86(6): 2131–2144. https://doi.org/10.3168/jds.S0022-0302(03)73803-X

119. Rutten C.J., Velthuis A.G.J., Steeneveld W., Hogeveen H. Invited review: Sensors to support health management on dairy farms. Journal of Dairy Science. 2013; 96(4): 1928–1952. https://doi.org/10.3168/jds.2012-6107


Рецензия

Для цитирования:


Устименко А.В., Абилов А.И., Козменков П.Л. Послеотельные отклонения у коров и первотелок и способы их коррекции. Аграрная наука. 2025;(10):45-57. https://doi.org/10.32634/0869-8155-2025-399-10-45-57

For citation:


Ustimenko A.V., Abilov A.I., Kozmenkov P.L. Postpartum deviations in cows and first-calf heifers and methods for their correction. Agrarian science. 2025;(10):45-57. (In Russ.) https://doi.org/10.32634/0869-8155-2025-399-10-45-57

Просмотров: 11


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 0869-8155 (Print)
ISSN 2686-701X (Online)