Monitoring of the prevalence and pathogenic properties of Clostridium species in farm animals and birds in the Russian Federation
https://doi.org/10.32634/0869-8155-2025-401-12-16-21
Abstract
This paper presents the results of monitoring studies on anaerobic microorganisms, namely clostridia. Over a five-year period, 6372 samples of birds, pigs, and cattle (liver, intestines, stomach, lungs, muscle tissue, spleen, and heart) were examined using routine microbiological methods from such regions of Russia as Oryol, Tver, Novgorod, Nizhny Novgorod, Moscow, Kaluga, Chelyabinsk, Penza, Tambov, Volgograd, Kemerovo, Ryazan, Novosibirsk, Orenburg, Yaroslavl, Voronezh, Leningrad, Sverdlovsk, Rostov, Tyumen, Lipetsk, Tomsk, Vladimir, Omsk, Belgorod regions, Republics of North Ossetia — Alania, Bashkortostan, Tatarstan, Chuvashia, Mordovia, Buryatia, Perm, Altai, Krasnodar, Stavropol Territory, Moscow. As a result, 1060 clostridia isolates were obtained. According to the data obtained, the incidence of Clostridium tertium was 29.15%, Clostridium perfringens — 25.85%, Clostridium sporogenes — 11.89%, Paraclostridium bifermentans — 8.58%, Clostridium butyricum — 4.53%, Clostridium paraputrificum — 3.96%, Clostridium difficile — 3.02%, Clostridium cadaveris — 2.92%, Paeniclostridium sordelli — 2.26%, Clostridium novyi — 1.89%, Clostridium chauvoei — 1.42%, Clostridium sartagoforme and Clostridium spp. — 1.04%, Clostridium septicum and Clostridium baratii — 0.66%, Clostridium cochlearium — 0.57%, Clostridium ramosum — 0,28%, Clostridium sphenoides — 0,19%, Clostridium innocuum — 0,09%. Pathogenic properties were found in 165 isolates: 126 — Clostridium perfringens, 22 — Clostridium difficile, 7 — Clostridium novyi, 6 — Clostridium chauvoei, 3 — Clostridium septicum, 1 — Clostridium spp.; toxigenic properties were found in 105 isolates: 84 — Clostridium perfringens, 11 — Clostridium novyi, 6 — Paeniclostridium sordelli, 2 — Clostridium septicum, 1 — Clostridium difficile, 1 — Clostridium spp.
About the Authors
A. V. KapustinRussian Federation
Andrey Vladimirovich Kapustin, Doctor of Biological Sciences, First Deputy Director
24 Ryazan Ave., Moscow, 109428
P. N. Shastin
Russian Federation
Pavel Nikolaevich Shastin, Candidate of Veterinary Sciences, Senior Researcher
24 Ryazan Ave., Moscow, 109428
V. A. Savinov
Russian Federation
Vasily Alexandrovich Savinov, Candidate of Biological Sciences, Senior Researcher
24 Ryazan Ave., Moscow, 109428
A. V. Supova
Russian Federation
Anastasia Vladimirovna Supova, Research Associate
24 Ryazan Ave., Moscow, 109428
I. V. Polyakova
Russian Federation
Irina Viktorovna Polyakova, Candidate of Biological Sciences, Leading Researcher
24 Ryazan Ave., Moscow, 109428
References
1. Mikailov M.M., Gunashev Sh.A., Khubolov A.T., Karashaev M.F. Ensuring sustainable epizootic well-being. Problems of the relationship between science and economics: features of the current stage. Proceedings of the All-Russian (national) scientific and practical conference. Nalchik: Kabardino-Balkarian State Agrarian University named after V.M. Kokov. 2025; 383–387 (in Russian). https://www.elibrary.ru/zinpyr
2. M. Al-Maaqar S. et al. Identification of antibacterial agents against Klebsiella pneumoniae targeting the CTX-M-15 protein using integrated structure model-based virtual screening methods. Journal of Microbiology, Biotechnology and Food Sciences. 2024; 14(2): e11876. https://doi.org/10.55251/jmbfs.11876
3. Burkov P.V., Derkho M.A., Rebezov M.B., Shcherbakov P.N., Derkho A.O. Pathomorphological features of internal organs of piglets with circovirus infection. Bulletin of Osh State University. Agriculture: agronomy, veterinary science and animal husbandry. 2024; 4(9): 98–111 (in Russian). https://doi.org/10.52754/16948696_2024_4(9)_13
4. Kuznetsova E.O., Lopaeva N.L. Kuznetsova E.O. Animal Exercise. Modern Agricultural Science: Problems and Solutions. Collection of Abstracts from the Round Table in Online Format. Yekaterinburg: Ural State Agrarian University. 2020; 304–306 (in Russian). https://www.elibrary.ru/flrrei
5. Ganushchenko O. Modern Approaches to Standardizing the Nutrient Needs of Dairy Cattle. Veterinary Science (Minsk). 2024; (11): 35–48 (in Russian) https://www.elibrary.ru/awzcyo
6. Barzanova E.N. The influence of inhaled air in a pig-breeding complex on the phagocytic activity of piglets during the fattening period. The role of agricultural science in sustainable development of rural areas. Proceedings of the IX All-Russian (national) scientific conference with international participation. Novosibirsk: Zolotoy kolos. 2024; 782–784 (in Russian). https://www.elibrary.ru/csocwb
7. Shcherbakov P.N., Stepanova K.V., Burkov P.V., Rebezov M.B., Shnyakina T.N., Barzanova E.N. The mechanism of suppression of the synthesis of toxic gases and their indirect effect on the vital parameters of animals under adaptive growing technologies. Agrarian science. 2023; (2): 49–53 (in Russian). https://doi.org/10.32634/0869-8155-2023-367-2-49-53
8. Belookova O.V., Rebezov M.B., Lennikova M.G., Zyablitseva M.A. Influence of zoohygienic parameters on meat productivity of pigs. Bulletin of Osh State University. Agriculture: agronomy, veterinary science and animal husbandry. 2024; 4(9): 52–64 (in Russian). https://doi.org/10.52754/16948696_2024_4(9)_8
9. Musayeva A.K., Еgorova N.N., Shakibaev Y., Ozbekbai N. Clostridiosis of farm animals. Natsional’naya assotsiatsiya uchenykh. 2022; 81: 6–14 (in Russian). https://www.elibrary.ru/mjgjwh
10. Supova A.V., Shastin P.N., Laishevtsev A.I., Gilmanov Kh.Kh., Ezhova E.G. Species diver sity of clostridium in pigs in Russia. Veterinary medicine. 2025; (9): 21–27 (in Russian). https://doi.org/10.30896/0042-4846.2025.28.9.21-27
11. Shastin P.N., Supova A.V., Laishevtsev A.I., Khabarova A.V., Fabrikantova E.A. Clostridious profile of birds. Veterinaria i kormlenie. 2025; (3): 112–115 (in Russian). https://doi.org/10.30917/ATT-VK-1814-9588-2025-3-24
12. Shastin P.N., Savinov V.A., Laishevtsev A.I., Mandryka E.D., Fabrikantova E.A., Supova A.V. Clostridium species diversity in cattle. Veterinary Science Today. 2025; 14(2): 194–200. https://doi.org/10.29326/2304-196X-2025-14-2-194-200
13. Peck M.W. et al. Historical Perspectives and Guidelines for Botulinum Neurotoxin Subtype Nomenclature. Toxins. 2017; 9(1): 38. https://doi.org/10.3390/toxins9010038
14. Smith T.J. et al. Genomic sequences of six botulinum neurotoxinproducing strains representing three clostridial species illustrate the mobility and diversity of botulinum neurotoxin genes. Infection, Genetics and Evolution. 2015; 30: 102–113. https://doi.org/10.1016/j.meegid.2014.12.002
15. Palmer J.S., Hough R.L., West H.M., Avery L.M. A review of the abundance, behaviour and detection of clostridial pathogens in agricultural soils. European Journal of Soil Science. 2019; 70(4): 911–929. https://doi.org/10.1111/ejss.12847
16. Sudorgina T.E., Glotova T.I., Koteneva S.V., Nefedchenko A.V., Velker D.A., Glotov A.G. Clostridium infections in cattle: characteristics of the main etiological agents, prevention and control measures (review, part 1). Veterinary medicine. 2023; (5): 3–10 (in Russian). https://doi.org/10.30896/0042-4846.2023.26.5.03-09
17. Popova A.S., Alekseeva I.G. Diagnosis of clostridiosis in cattle. Current trends in the development of veterinary science and practice. Proceedings of the National (All-Russian) Scientific and Practical Conference. Omsk: Omsk State Agrarian University. 2021; 43–46 (in Russian). https://www.elibrary.ru/drovzo
18. Bezborodova N.A., Sokolova O.N., Kozhukhovskaya V.V., Tomskikh O.G., Pechura E.V., Suzdaltseva M.A. Pathogenic species of clostridia and their antibiotic resistance, virulence factors, and genomic features. Innovations and Food Safety. 2023; (3): 39–51 (in Russian). https://doi.org/10.31677/2311-0651-2023-41-3-39-51
19. Hetényi N., Bersényi A., Hullár I. Physiological effects of mediumchain fatty acids and triglycerides as well as their potential application in poultry and swine nutrition. Magyar Állatorvosok Lapja. 2024; 146(11): 651–659 (in Hungarian). https://doi.org/10.56385/magyallorv.2024.11.651-659
20. Sebők C., Márton Rege A., Mackei M., Neogrády Zs., Mátis G. Antimicrobial peptides as new tools to combat infectious diseases. Magyar Állatorvosok Lapja. 2024; 146(3): 181–191 (in Hungarian). https://doi.org/10.56385/magyallorv.2024.03.181-191
21. Kerek Á., Szabó Á., Barnácz F., Csirmaz B., Kovács L., Jerzsele Á. Antimicrobial Susceptibility and Toxin Gene Profiles of Commensal Clostridium perfringens Isolates from Turkeys in Hungarian Poultry Farms (2022–2023). Antibiotics. 2025; 14(4): 413. https://doi.org/10.3390/antibiotics14040413
22. Laishevtsev A.I., Kapustin A.V., Yakimova E.A., Danilyuk A.V., Gulyukin A.M., Belimenko V.V. Necrotic enteritis of birds. IOP Conference Series: Earth and Environmental Science. 2019; 315(2): 022075. https://doi.org/10.1088/1755-1315/315/2/022075
23. Popoff M.R., Bouvet P. Genetic characteristics of toxigenic Clostridia and toxin gene evolution. Toxicon. 2013; 75: 63–89. https://doi.org/10.1016/j.toxicon.2013.05.003
Review
For citations:
Kapustin A.V., Shastin P.N., Savinov V.A., Supova A.V., Polyakova I.V. Monitoring of the prevalence and pathogenic properties of Clostridium species in farm animals and birds in the Russian Federation. Agrarian science. 2025;(12):16-21. (In Russ.) https://doi.org/10.32634/0869-8155-2025-401-12-16-21
JATS XML



































