Semen liquid microbiome of Bos taurus: taxonomic diversity, impact on fertility, and potential for probiotic modulation
https://doi.org/10.32634/0869-8155-2026-402-01-51-61
Abstract
The relevance of studying the microbiome of bull semen is due to the high importance of reproduction in animal husbandry, the problems of semen contamination with pathogens, and the need to improve the efficiency of artificial insemination. This review provides an overview of the taxonomic groups of microorganisms present in the seminal fluid of bulls. The review highlights the reasons for the limited research on the microbiota of bull semen and focuses on the advantages of modern molecular technologies, such as 16S rRNA sequencing, which allow for a more accurate determination of the microbial spectrum and their role in the reproductive system. The microbiota is diverse, including the phyla Proteobacteria, Firmicutes, Bacteroidetes, Actinobacteria, and Fusobacteria, which are likely to have a variety of effects on seed quality and fertility. It has been proven that despite the established influence of the reproductive system microbiome on fertility and sperm quality, which has been confirmed by studies on humans and other species of productive animals, there are currently no specific scientific publications that examine in detail the role of the seminal microbiome in bulls and its impact on relevant reproductive indicators. This review explores the external factors that influence the composition of the microbiome, such as feeding, season, and animal management practices. It was concluded that the use of probiotics in the feeding of bulls is a promising and environmentally friendly way to optimize the microbiota and improve reproductive function, increasing the quality of semen and fertility and reducing the need for antibiotics.
Keywords
About the Authors
E. A. YildirimRussian Federation
Elena Alexandrovna Yildirim, Doctor of Biological Sciences, Professor of the Department of Large-scale Animal Husbandry; Chief Biotechnologist of the Molecular Genetics Laboratory
2 Peterburgskoye shosse, Pushkin, St. Petersburg, 196601
19 Zagrebsky Boulevard, building 1, Saint Petersburg, 192284
V. A. Filippova
Russian Federation
Valentina Anatolyevna Filippova, Senior Lecturer of the Department of Large-scale Animal Husbandry; Biotechnologist
2 Peterburgskoye shosse, Pushkin, St. Petersburg, 196601
19 Zagrebsky Boulevard, building 1, Saint Petersburg, 192284
K. A. Sokolova
Russian Federation
Ksenia Andreevna Sokolova, Assistant of the Department of Large Animal Husbandry; Biotechnologis
2 Peterburgskoye shosse, Pushkin, St. Petersburg, 196601
19 Zagrebsky Boulevard, building 1, Saint Petersburg, 192284
E. A. Korochkina
Russian Federation
Elena Aleksandrovna Korochkina, Doctor of Veterinary Sciences, Professor of the Department of Genetic and Reproductive Biotechnology
5 Chernigovskaya Str., St. Petersburg, 196084
E. Yu. Finageev
Russian Federation
Evgeny Yurievich Finageev, Candidate of Veterinary Sciences, Assistant of the Department of Genetic and Reproductive Biotechnology
5 Chernigovskaya Str., St. Petersburg, 196084
M. A. Shubina
Russian Federation
Maria Aleksandrovna Shubina, Student
5 Chernigovskaya Str., St. Petersburg, 196084
References
1. Abilov A.I., Kozmenkov P.L., Iolchiev B.S., Ustimenko A.V. Qualitative characteristics of frozen-thawed semen (normal and sexed) from sires of the Holstein black-and-white breed and the age of puberty of the heifers born from them. Izvestiya of Timiryazev Agricultural Academy. 2023; (4): 95–109 (in Russian). https://doi.org/10.26897/0021-342X-2023-4-95-109
2. Vishwanath R. Artificial insemination: the state of the art. Theriogenology. 2003; 59(2): 571–584. https://doi.org/10.1016/s0093-691x(02)01241-4
3. Thibier M., Guerin B. Hygienic aspects of storage and use of semen for artificial insemination. Animal Reproduction Science. 2000; 62 (1–3): 233–251. https://doi.org/10.1016/s0378-4320(00)00161-5
4. Zampieri D. et al. Microorganisms in cryopreserved semen and culture media used in the in vitro production (IVP) of bovine embryos identified by matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS). Theriogenology. 2013; 80(4): 337–345. https://doi.org/10.1016/j.theriogenology.2013.04.020
5. Reda A.A., Almaw G., Abreha S., Tadeg W., Tadesse B. Bacteriospermia and Sperm Quality of Cryopreserved Bull Semen Used in Artificial Insemination of Cows in South Wollo Zone, Ethiopia. Veterinary Medicine International. 2020; 2020: 2098315. https://doi.org/10.1155/2020/2098315
6. Gączarzewicz D., Udała J., Piasecka M., Błaszczyk B., Stankiewicz T. Bacterial contamination of boar semen and its relationship to sperm quality preserved in commercial extender containing gentamicin sulfate. Polish Journal of Veterinary Sciences. 2016; 19(3): 451–459. https://doi.org/10.1515/pjvs-2016-0057
7. O’Mahony S.M., Comizzoli P. Special series on the role of the microbiome in reproduction and fertility. Reproduction and Fertility. 2023; 4(4): e230080. https://doi.org/10.1530/RAF-23-0080
8. Prince P.W., Almquist J.O., Reid J.J. Bacteriological studies of bovine semen. II. The incidence of specific types of bacteria and the relation to fertility. Journal of Dairy Science. 1949; 32(10): 849–855.
9. Goularte K.L. et al. Antibiotic resistance in microorganisms isolated in a bull semen stud. Reproduction in Domestic Animals. 2020; 55(3): 318–324. https://doi.org/10.1111/rda.13621
10. Woo P.C.Y., Lau S.K.P., Teng J.L.L., Tse H., Yuen K.-Y. Then and now: use of 16S rDNA gene sequencing for bacterial identification and discovery of novel bacteria in clinical microbiology laboratories. Clinical Microbiology and Infection. 2008; 14(10): 908–934. https://doi.org/10.1111/j.1469-0691.2008.02070.x
11. Haapala V. et al. Semen as a source of Mycoplasma bovis mastitis in dairy herds. Veterinary Microbiology. 2018; 216: 60–66. https://doi.org/10.1016/j.vetmic.2018.02.005
12. Wickware C.L., Johnson T.A., Koziol J.H. Composition and diversity of the preputial microbiota in healthy bulls. Theriogenology. 2020; 145: 231–237. https://doi.org/10.1016/j.theriogenology.2019.11.002
13. Medo J. et al. Core Microbiome of Slovak Holstein Friesian Breeding Bulls’ Semen. Animals. 2021; 11(11): 3331. https://doi.org/10.3390/ani11113331
14. Koziol J.H., Sheets T., Wickware C.L., Johnson T.A. Composition and diversity of the seminal microbiota in bulls and its association with semen parameters. Theriogenology. 2022; 182: 17–25. https://doi.org/10.1016/j.theriogenology.2022.01.029
15. Cojkic A., Niazi Y., Guo Y., Hallap T., Padrik P., Morrell J.M. Identification of Bull Semen Microbiome by 16S Sequencing and Possible Relationships with Fertility. Microorganisms. 2021; 9(12): 2431. https://doi.org/10.3390/microorganisms9122431
16. Cojkic A., Niazi A., Morrell J.M. Metagenomic identification of bull semen microbiota in different seasons. Animal Reproduction Science. 2024; 268: 107569. https://doi.org/10.1016/j.anireprosci.2024.107569
17. Moon C.D., Young W., Maclean P.H., Cookson A.L., Bermingham E.N. Metagenomic insights into the roles of Proteobacteria in the gastrointestinal microbiomes of healthy dogs and cats. MicrobiologyOpen. 2018; 7(5): e00677. https://doi.org/10.1002/mbo3.677
18. Moretti E. et al. The presence of bacteria species in semen and sperm quality. Journal of Assisted Reproduction and Genetics. 2009; 26(1): 47–56. https://doi.org/10.1007/s10815-008-9283-5
19. Thi M.T.T., Wibowo D., Rehm B.H.A. Pseudomonas aeruginosa Biofilms. International Journal of Molecular Sciences. 2020; 21(22): 8671. https://doi.org/10.3390/ijms21228671
20. Stojanov S., Berlec A., Štrukelj B. The Influence of Probiotics on the Firmicutes/Bacteroidetes Ratio in the Treatment of Obesity and Inflammatory Bowel disease. Microorganisms. 2020; 8(11): 1715. https://doi.org/10.3390/microorganisms8111715
21. Bay V. et al. 16S rRNA amplicon sequencing reveals a polymicrobial nature of complicated claw horn disruption lesions and interdigital phlegmon in dairy cattle. Scientific Reports. 2018; 8: 15529. https://doi.org/10.1038/s41598-018-33993-9
22. Yu H., Meng H., Zhou F., Ni X., Shen S., Das U.N. Urinary microbiota in patients with prostate cancer and benign prostatic hyperplasia. Archives of Medical Science. 2015; 11(2): 385–394. https://doi.org/10.5114/aoms.2015.50970
23. Úbeda J.L. et al. Adverse effects of members of the Enterobacteriaceae family on boar sperm quality. Theriogenology. 2013; 80(6): 565–570. https://doi.org/10.1016/j.theriogenology.2013.05.022
24. Payne B.J., Clark S., Maddox C., Ness A. Achromobacter xylosoxidans in extended semen causes reproductive failure in artificially inseminated sows and gilts. Journal of Swine Health and Production. 2008; 16(6): 316–322.
25. Baud D., Pattaroni C., Vulliemoz N., Castella V., Marsland B.J., Stojanov M. Sperm Microbiota and Its Impact on Semen Parameters. Frontiers in Microbiology. 2019; 10: 234. https://doi.org/10.3389/fmicb.2019.00234
26. Serrano M. et al. Influence of the Ovine Genital Tract Microbiota on the Species Artificial Insemination Outcome. A Pilot Study in Commercial Sheep Farms. High-Throughput. 2020; 9(3): 16. https://doi.org/10.3390/ht9030016
27. Zhang J. et al. Genomic Sequencing Reveals the Diversity of Seminal Bacteria and Relationships to Reproductive Potential in Boar Sperm. Frontiers in Microbiology. 2020; 11: 1873. https://doi.org/10.3389/fmicb.2020.01873
28. Quiñones-Pérez C., Hidalgo M., Ortiz I., Crespo F., Vega-Pla J.L. Characterization of the seminal bacterial microbiome of healthy, fertile stallions using next-generation sequencing. Animal Reproduction. 2021; 18(2): e20200052. https://doi.org/10.1590/1984-3143-ar2020-0052
29. Marco-Jiménez F., Borrás S., García-Domínguez X., D’Auria G., Vicente J.S., Marin C. Roles of host genetics and sperm microbiota in reproductive success in healthy rabbit. Theriogenology. 2020; 158: 416–423. https://doi.org/10.1016/j.theriogenology.2020.09.028
30. Neto F.T.L., Viana M.C., Cariati F., Conforti A., Alviggi C., Esteves S.C. Effect of environmental factors on seminal microbiome and impact on sperm quality. Frontiers in Endocrinology. 2024; 15: 1348186. https://doi.org/10.3389/fendo.2024.1348186
31. Cojkic A., Morrell J.M. Animal Welfare Assessment Protocols for Bulls in Artificial Insemination Centers: Requirements, Principles, and Criteria. Animals. 2023; 13(5): 942. https://doi.org/10.3390/ani13050942
32. Sannat C., Nair A., Sahu S.B., Sahasrabudhe S.A., Rawat N., Shende R.K. Effect of Season on Bacterial Load in Semen of Different Breeds of Cattle. Journal of Animal Research. 2016; 6(4): 651–656. https://doi.org/10.5958/2277-940X.2016.00077.2
33. Azawi O.I., Ismaeel M.A. Effects of Seasons on Some Semen Parameters and Bacterial Contamination of Awassi ram Semen. Reproduction in Domestic Animals. 2012; 47(3): 403–406. https://doi.org/10.1111/j.1439-0531.2011.01888.x
34. Gangwar C. et al. Semen quality and total microbial load: An association study in important Indian Goat breeds during different seasons. Andrologia. 2021; 53(4): e13995. https://doi.org/10.1111/and.13995
35. Sannat C., Nair A., Sahu S.B., Sahasrabudhe S.A. Effect of Season and Age on Bacterial Load in Fresh Semen Ejaculates of Buffalo Bulls. Journal of Animal Research. 2015; 5(1): 99–104. https://doi.org/10.5958/2277-940X.2015.00016.9
36. Chemineau P., Guillaume D., Migaud M., Thiéry J.C., Pellicer-Rubio M.T., Malpaux B. Seasonality of Reproduction in Mammals: Intimate Regulatory Mechanisms and Practical Implications. Reproduction in Domestic Animals. 2008; 43(s2): 40–47. https://doi.org/10.1111/j.1439-0531.2008.01141.x
37. Akgün N., Cimşit Kemahlı M.N., Pradas J.B. The effect of dietary habits on oocyte/sperm quality. Journal of the Turkish-German Gynecological Association. 2023; 24(2): 125–137. https://doi.org/10.4274/jtgga.galenos.2023.2022-7-15
38. Ferramosca A., Zara V. Diet and Male Fertility: The Impact of Nutrients and Antioxidants on Sperm Energetic Metabolism. International Journal of Molecular Sciences. 2022; 23(5): 2542. https://doi.org/10.3390/ijms23052542
39. Farahani L., Tharakan T., Yap T., Ramsay J.W., Jayasena C.N., Minhas S. The semen microbiome and its impact on sperm function and male fertility: A systematic review and meta-analysis. Andrology. 2021; 9(1): 115–144. https://doi.org/10.1111/andr.12886
40. Morrell J.M., Wallgren M. Alternatives to Antibiotics in Semen Extenders: A Review. Pathogens. 2014; 3(4): 934–946. https://doi.org/10.3390/pathogens3040934
41. Miao X. et al. The Equilibrium of Bacterial Microecosystem: Probiotics, Pathogenic Bacteria, and Natural Antimicrobial Substances in Semen. Microorganisms. 2024; 12(11): 2253. https://doi.org/10.3390/microorganisms12112253
42. Cagnoli C.I., Chiapparrone M.L., Cacciato C.S., Rodríguez M.G., Aller J.F., Catena M.d.C. Effects of Campylobacter fetus on bull sperm quality. Microbial Pathogenesis. 2020; 149: 104486. https://doi.org/10.1016/j.micpath.2020.104486
43. Marchiani S. et al. Effects of common Gram-negative pathogens causing male genitourinary-tract infections on human sperm functions. Scientific Reports. 2021; 11: 19177. https://doi.org/10.1038/s41598-021-98710-5
44. Eini F., Kutenaei M.A., Zareei F., Dastjerdi Z.S., Shirzeyli M.H., Salehi E. Effect of bacterial infection on sperm quality and DNA fragmentation in subfertile men with Leukocytospermia. BMC Molecular and Cell Biology. 2021; 22: 42. https://doi.org/10.1186/s12860-021-00380-8
45. Appiah M.O., Wang J., Lu W. Microflora in the Reproductive Tract of Cattle: A Review. Agriculture. 2020; 10(6): 232. https://doi.org/10.3390/agriculture10060232
46. Maroto Martín L.O. et al. Bacterial contamination of boar semen affects the litter size. Animal Reproduction Science. 2010; 120(1–4): 95–104. https://doi.org/10.1016/j.anireprosci.2010.03.008
47. Sheldon I.M., Owens S.E. Postpartum uterine infection and endometritis in dairy cattle. Animal Reproduction. 2017; 14(3): 622–629. https://doi.org/10.21451/1984-3143-AR1006
48. Tvrdá E. et al. Possible Implications of Bacteriospermia on the Sperm Quality, Oxidative Characteristics, and Seminal Cytokine Network in Normozoospermic Men. International Journal of Molecular Sciences. 2022; 23(15): 8678. https://doi.org/10.3390/ijms23158678
49. Varela E. et al. How does the microbial load affect the quality of equine cool-stored semen?. Theriogenology. 2018; 114: 212–220. https://doi.org/10.1016/j.theriogenology.2018.03.028
50. Konstantinidis T., Tsigalou C., Karvelas A., Stavropoulou E., Voidarou C., Bezirtzoglou E. Effects of Antibiotics upon the Gut Microbiome: A Review of the Literature. Biomedicines. 2020; 8(11): 502. https://doi.org/10.3390/biomedicines8110502
51. Lv S. et al. Gut microbiota is involved in male reproductive function: a review. Frontiers in Microbiology. 2024; 15: 1371667. https://doi.org/10.3389/fmicb.2024.1371667
52. Adak A., Khan M.R. An insight into gut microbiota and its functionalities. Cellular and Molecular Life Sciences. 2019; 76(3): 473–493. https://doi.org/10.1007/s00018-018-2943-4
53. Hao Y. et al. Gut Microbiota-Testis Axis: FMT Mitigates High-Fat Diet-Diminished Male Fertility via Improving Systemic and Testicular Metabolome. Microbiology Spectrum. 2022; 10(3): e00028-22. https://doi.org/10.1128/spectrum.00028-22
54. Zhou Y. et al. Taxifolin increased semen quality of Duroc boars by improving gut microbes and blood metabolites. Frontiers in Microbiology. 2022; 13: 1020628. https://doi.org/10.3389/fmicb.2022.1020628
55. Zhang Y., Hou B., Liu T., Wu Y., Wang Z. Probiotics improve polystyrene microplastics-induced male reproductive toxicity in mice by alleviating inflammatory response. Ecotoxicology and Environmental Safety. 2023; 263: 115248. https://doi.org/10.1016/j.ecoenv.2023.115248
56. Wiest R., Garcia-Tsao G. Bacterial translocation (BT) in cirrhosis. Hepatology. 2005; 41(3): 422–433. https://doi.org/10.1002/hep.20632
57. Tremellen K., McPhee N., Pearce K., Benson S., Schedlowski M., Engler H. Endotoxin-initiated inflammation reduces testosterone production in men of reproductive age. American Journal of PhysiologyEndocrinology and Metabolism. 2018; 314(3): E206–E213. https://doi.org/10.1152/ajpendo.00279.2017
58. Desai M.S. et al. A Dietary Fiber-Deprived Gut Microbiota Degrades the Colonic Mucus Barrier and Enhances Pathogen Susceptibility. Cell. 2016; 167(5): 1339–1353.e1321. https://doi.org/10.1016/j.cell.2016.10.043
59. Li P., Hu J., Zhao H., Feng J., Chai B. Multi-Omics Reveals Inhibitory Effect of Baicalein on Non-Alcoholic Fatty Liver Disease in Mice. Frontiers in Pharmacology. 2022; 13: 925349. https://doi.org/10.3389/fphar.2022.925349
60. Wang Y., Xie Z. Exploring the role of gut microbiome in male reproduction. Andrology. 2022; 10(3): 441–450. https://doi.org/10.1111/andr.13143
61. Ding N. et al. Impairment of spermatogenesis and sperm motility by the high-fat diet-induced dysbiosis of gut microbes. Gut. 2020; 69(9): 1608–1619. https://doi.org/10.1136/gutjnl-2019-319127
62. Clarke G. et al. The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Molecular Psychiatry. 2013; 18(6): 666–673. https://doi.org/10.1038/mp.2012.77
63. Ye L. et al. Impacts of Immunometabolism on Male Reproduction. Frontiers in Immunology. 2021; 12: 658432. https://doi.org/10.3389/fimmu.2021.658432
64. Lin Y. et al. Effects of dietary L-leucine supplementation on testicular development and semen quality in boars. Frontiers in Veterinary Science. 2022; 9: 904653. https://doi.org/10.3389/fvets.2022.904653
65. Zhu Y. et al. Catalpol ameliorates diabetes-induced testicular injury and modulates gut microbiota. Life Sciences. 2021; 267: 118881. https://doi.org/10.1016/j.lfs.2020.118881
66. Yuan X., Chen R., Zhang Y., Lin X., Yang X. Gut microbiota: effect of pubertal status. BMC Microbiology. 2020; 20: 334. https://doi.org/10.1186/s12866-020-02021-0
67. Helli B., Kavianpour M., Ghaedi E., Dadfar M., Haghighian H.K. Probiotic effects on sperm parameters, oxidative stress index, inflammatory factors and sex hormones in infertile men. Human Fertility. 2022; 25(3): 499–507. https://doi.org/10.1080/14647273.2020.1824080
68. Akram M., Ali S.A., Behare P., Kaul G. Dietary intake of probiotic fermented milk benefits the gut and reproductive health in mice fed with an obesogenic diet. Food & Function. 2022; 13(2): 737–752. https://doi.org/10.1039/d1fo02501e
69. Inatomi T., Otomaru K. Effect of dietary probiotics on the semen traits and antioxidative activity of male broiler breeders. Scientific Reports. 2018; 8: 5874. https://doi.org/10.1038/s41598-018-24345-8
Review
For citations:
Yildirim E.A., Filippova V.A., Sokolova K.A., Korochkina E.A., Finageev E.Yu., Shubina M.A. Semen liquid microbiome of Bos taurus: taxonomic diversity, impact on fertility, and potential for probiotic modulation. Agrarian science. 2026;1(1):51-61. (In Russ.) https://doi.org/10.32634/0869-8155-2026-402-01-51-61
JATS XML



































