Preview

Agrarian science

Advanced search

Semen liquid microbiome of Bos taurus: taxonomic diversity, impact on fertility, and potential for probiotic modulation

https://doi.org/10.32634/0869-8155-2026-402-01-51-61

Abstract

The relevance of studying the microbiome of bull semen is due to the high importance of reproduction in animal husbandry, the problems of semen contamination with pathogens, and the need to improve the efficiency of artificial insemination. This review provides an overview of the taxonomic groups of microorganisms present in the seminal fluid of bulls. The review highlights the reasons for the limited research on the microbiota of bull semen and focuses on the advantages of modern molecular technologies, such as 16S rRNA sequencing, which allow for a more accurate determination of the microbial spectrum and their role in the reproductive system. The microbiota is diverse, including the phyla Proteobacteria, Firmicutes, Bacteroidetes, Actinobacteria, and Fusobacteria, which are likely to have a variety of effects on seed quality and fertility. It has been proven that despite the established influence of the reproductive system microbiome on fertility and sperm quality, which has been confirmed by studies on humans and other species of productive animals, there are currently no specific scientific publications that examine in detail the role of the seminal microbiome in bulls and its impact on relevant reproductive indicators. This review explores the external factors that influence the composition of the microbiome, such as feeding, season, and animal management practices. It was concluded that the use of probiotics in the feeding of bulls is a promising and environmentally friendly way to optimize the microbiota and improve reproductive function, increasing the quality of semen and fertility and reducing the need for antibiotics.

About the Authors

E. A. Yildirim
St. Petersburg State Agrarian University; “BIOTROF+” Ltd
Russian Federation

Elena Alexandrovna Yildirim, Doctor of Biological Sciences, Professor of the Department of Large-scale Animal Husbandry; Chief Biotechnologist of the Molecular Genetics  Laboratory

2 Peterburgskoye shosse, Pushkin, St. Petersburg, 196601

19 Zagrebsky Boulevard, building 1, Saint Petersburg, 192284



V. A. Filippova
St. Petersburg State Agrarian University; “BIOTROF+” Ltd
Russian Federation

Valentina Anatolyevna Filippova, Senior Lecturer of the Department of Large-scale Animal Husbandry; Biotechnologist

2 Peterburgskoye shosse, Pushkin, St. Petersburg, 196601

19 Zagrebsky Boulevard, building 1, Saint Petersburg, 192284



K. A. Sokolova
St. Petersburg State Agrarian University; “BIOTROF+” Ltd
Russian Federation

Ksenia Andreevna Sokolova, Assistant of the Department of Large Animal Husbandry; Biotechnologis

2 Peterburgskoye shosse, Pushkin, St. Petersburg, 196601

19 Zagrebsky Boulevard, building 1, Saint Petersburg, 192284



E. A. Korochkina
Saint Petersburg State University of Veterinary Medicine
Russian Federation

Elena Aleksandrovna Korochkina, Doctor of Veterinary Sciences, Professor of the Department  of Genetic and Reproductive Biotechnology

5 Chernigovskaya Str., St. Petersburg, 196084



E. Yu. Finageev
Saint Petersburg State University of Veterinary Medicine
Russian Federation

Evgeny Yurievich Finageev, Candidate of Veterinary Sciences, Assistant of the Department of Genetic and Reproductive Biotechnology 

5 Chernigovskaya Str., St. Petersburg, 196084



M. A. Shubina
Saint Petersburg State University of Veterinary Medicine
Russian Federation

Maria Aleksandrovna Shubina, Student

5 Chernigovskaya Str., St. Petersburg, 196084



References

1. Abilov A.I., Kozmenkov P.L., Iolchiev B.S., Ustimenko A.V. Qualitative characteristics of frozen-thawed semen (normal and sexed) from sires of the Holstein black-and-white breed and the age of puberty of the heifers born from them. Izvestiya of Timiryazev Agricultural Academy. 2023; (4): 95–109 (in Russian). https://doi.org/10.26897/0021-342X-2023-4-95-109

2. Vishwanath R. Artificial insemination: the state of the art. Theriogenology. 2003; 59(2): 571–584. https://doi.org/10.1016/s0093-691x(02)01241-4

3. Thibier M., Guerin B. Hygienic aspects of storage and use of semen for artificial insemination. Animal Reproduction Science. 2000; 62 (1–3): 233–251. https://doi.org/10.1016/s0378-4320(00)00161-5

4. Zampieri D. et al. Microorganisms in cryopreserved semen and culture media used in the in vitro production (IVP) of bovine embryos identified by matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS). Theriogenology. 2013; 80(4): 337–345. https://doi.org/10.1016/j.theriogenology.2013.04.020

5. Reda A.A., Almaw G., Abreha S., Tadeg W., Tadesse B. Bacteriospermia and Sperm Quality of Cryopreserved Bull Semen Used in Artificial Insemination of Cows in South Wollo Zone, Ethiopia. Veterinary Medicine International. 2020; 2020: 2098315. https://doi.org/10.1155/2020/2098315

6. Gączarzewicz D., Udała J., Piasecka M., Błaszczyk B., Stankiewicz T. Bacterial contamination of boar semen and its relationship to sperm quality preserved in commercial extender containing gentamicin sulfate. Polish Journal of Veterinary Sciences. 2016; 19(3): 451–459. https://doi.org/10.1515/pjvs-2016-0057

7. O’Mahony S.M., Comizzoli P. Special series on the role of the microbiome in reproduction and fertility. Reproduction and Fertility. 2023; 4(4): e230080. https://doi.org/10.1530/RAF-23-0080

8. Prince P.W., Almquist J.O., Reid J.J. Bacteriological studies of bovine semen. II. The incidence of specific types of bacteria and the relation to fertility. Journal of Dairy Science. 1949; 32(10): 849–855.

9. Goularte K.L. et al. Antibiotic resistance in microorganisms isolated in a bull semen stud. Reproduction in Domestic Animals. 2020; 55(3): 318–324. https://doi.org/10.1111/rda.13621

10. Woo P.C.Y., Lau S.K.P., Teng J.L.L., Tse H., Yuen K.-Y. Then and now: use of 16S rDNA gene sequencing for bacterial identification and discovery of novel bacteria in clinical microbiology laboratories. Clinical Microbiology and Infection. 2008; 14(10): 908–934. https://doi.org/10.1111/j.1469-0691.2008.02070.x

11. Haapala V. et al. Semen as a source of Mycoplasma bovis mastitis in dairy herds. Veterinary Microbiology. 2018; 216: 60–66. https://doi.org/10.1016/j.vetmic.2018.02.005

12. Wickware C.L., Johnson T.A., Koziol J.H. Composition and diversity of the preputial microbiota in healthy bulls. Theriogenology. 2020; 145: 231–237. https://doi.org/10.1016/j.theriogenology.2019.11.002

13. Medo J. et al. Core Microbiome of Slovak Holstein Friesian Breeding Bulls’ Semen. Animals. 2021; 11(11): 3331. https://doi.org/10.3390/ani11113331

14. Koziol J.H., Sheets T., Wickware C.L., Johnson T.A. Composition and diversity of the seminal microbiota in bulls and its association with semen parameters. Theriogenology. 2022; 182: 17–25. https://doi.org/10.1016/j.theriogenology.2022.01.029

15. Cojkic A., Niazi Y., Guo Y., Hallap T., Padrik P., Morrell J.M. Identification of Bull Semen Microbiome by 16S Sequencing and Possible Relationships with Fertility. Microorganisms. 2021; 9(12): 2431. https://doi.org/10.3390/microorganisms9122431

16. Cojkic A., Niazi A., Morrell J.M. Metagenomic identification of bull semen microbiota in different seasons. Animal Reproduction Science. 2024; 268: 107569. https://doi.org/10.1016/j.anireprosci.2024.107569

17. Moon C.D., Young W., Maclean P.H., Cookson A.L., Bermingham E.N. Metagenomic insights into the roles of Proteobacteria in the gastrointestinal microbiomes of healthy dogs and cats. MicrobiologyOpen. 2018; 7(5): e00677. https://doi.org/10.1002/mbo3.677

18. Moretti E. et al. The presence of bacteria species in semen and sperm quality. Journal of Assisted Reproduction and Genetics. 2009; 26(1): 47–56. https://doi.org/10.1007/s10815-008-9283-5

19. Thi M.T.T., Wibowo D., Rehm B.H.A. Pseudomonas aeruginosa Biofilms. International Journal of Molecular Sciences. 2020; 21(22): 8671. https://doi.org/10.3390/ijms21228671

20. Stojanov S., Berlec A., Štrukelj B. The Influence of Probiotics on the Firmicutes/Bacteroidetes Ratio in the Treatment of Obesity and Inflammatory Bowel disease. Microorganisms. 2020; 8(11): 1715. https://doi.org/10.3390/microorganisms8111715

21. Bay V. et al. 16S rRNA amplicon sequencing reveals a polymicrobial nature of complicated claw horn disruption lesions and interdigital phlegmon in dairy cattle. Scientific Reports. 2018; 8: 15529. https://doi.org/10.1038/s41598-018-33993-9

22. Yu H., Meng H., Zhou F., Ni X., Shen S., Das U.N. Urinary microbiota in patients with prostate cancer and benign prostatic hyperplasia. Archives of Medical Science. 2015; 11(2): 385–394. https://doi.org/10.5114/aoms.2015.50970

23. Úbeda J.L. et al. Adverse effects of members of the Enterobacteriaceae family on boar sperm quality. Theriogenology. 2013; 80(6): 565–570. https://doi.org/10.1016/j.theriogenology.2013.05.022

24. Payne B.J., Clark S., Maddox C., Ness A. Achromobacter xylosoxidans in extended semen causes reproductive failure in artificially inseminated sows and gilts. Journal of Swine Health and Production. 2008; 16(6): 316–322.

25. Baud D., Pattaroni C., Vulliemoz N., Castella V., Marsland B.J., Stojanov M. Sperm Microbiota and Its Impact on Semen Parameters. Frontiers in Microbiology. 2019; 10: 234. https://doi.org/10.3389/fmicb.2019.00234

26. Serrano M. et al. Influence of the Ovine Genital Tract Microbiota on the Species Artificial Insemination Outcome. A Pilot Study in Commercial Sheep Farms. High-Throughput. 2020; 9(3): 16. https://doi.org/10.3390/ht9030016

27. Zhang J. et al. Genomic Sequencing Reveals the Diversity of Seminal Bacteria and Relationships to Reproductive Potential in Boar Sperm. Frontiers in Microbiology. 2020; 11: 1873. https://doi.org/10.3389/fmicb.2020.01873

28. Quiñones-Pérez C., Hidalgo M., Ortiz I., Crespo F., Vega-Pla J.L. Characterization of the seminal bacterial microbiome of healthy, fertile stallions using next-generation sequencing. Animal Reproduction. 2021; 18(2): e20200052. https://doi.org/10.1590/1984-3143-ar2020-0052

29. Marco-Jiménez F., Borrás S., García-Domínguez X., D’Auria G., Vicente J.S., Marin C. Roles of host genetics and sperm microbiota in reproductive success in healthy rabbit. Theriogenology. 2020; 158: 416–423. https://doi.org/10.1016/j.theriogenology.2020.09.028

30. Neto F.T.L., Viana M.C., Cariati F., Conforti A., Alviggi C., Esteves S.C. Effect of environmental factors on seminal microbiome and impact on sperm quality. Frontiers in Endocrinology. 2024; 15: 1348186. https://doi.org/10.3389/fendo.2024.1348186

31. Cojkic A., Morrell J.M. Animal Welfare Assessment Protocols for Bulls in Artificial Insemination Centers: Requirements, Principles, and Criteria. Animals. 2023; 13(5): 942. https://doi.org/10.3390/ani13050942

32. Sannat C., Nair A., Sahu S.B., Sahasrabudhe S.A., Rawat N., Shende R.K. Effect of Season on Bacterial Load in Semen of Different Breeds of Cattle. Journal of Animal Research. 2016; 6(4): 651–656. https://doi.org/10.5958/2277-940X.2016.00077.2

33. Azawi O.I., Ismaeel M.A. Effects of Seasons on Some Semen Parameters and Bacterial Contamination of Awassi ram Semen. Reproduction in Domestic Animals. 2012; 47(3): 403–406. https://doi.org/10.1111/j.1439-0531.2011.01888.x

34. Gangwar C. et al. Semen quality and total microbial load: An association study in important Indian Goat breeds during different seasons. Andrologia. 2021; 53(4): e13995. https://doi.org/10.1111/and.13995

35. Sannat C., Nair A., Sahu S.B., Sahasrabudhe S.A. Effect of Season and Age on Bacterial Load in Fresh Semen Ejaculates of Buffalo Bulls. Journal of Animal Research. 2015; 5(1): 99–104. https://doi.org/10.5958/2277-940X.2015.00016.9

36. Chemineau P., Guillaume D., Migaud M., Thiéry J.C., Pellicer-Rubio M.T., Malpaux B. Seasonality of Reproduction in Mammals: Intimate Regulatory Mechanisms and Practical Implications. Reproduction in Domestic Animals. 2008; 43(s2): 40–47. https://doi.org/10.1111/j.1439-0531.2008.01141.x

37. Akgün N., Cimşit Kemahlı M.N., Pradas J.B. The effect of dietary habits on oocyte/sperm quality. Journal of the Turkish-German Gynecological Association. 2023; 24(2): 125–137. https://doi.org/10.4274/jtgga.galenos.2023.2022-7-15

38. Ferramosca A., Zara V. Diet and Male Fertility: The Impact of Nutrients and Antioxidants on Sperm Energetic Metabolism. International Journal of Molecular Sciences. 2022; 23(5): 2542. https://doi.org/10.3390/ijms23052542

39. Farahani L., Tharakan T., Yap T., Ramsay J.W., Jayasena C.N., Minhas S. The semen microbiome and its impact on sperm function and male fertility: A systematic review and meta-analysis. Andrology. 2021; 9(1): 115–144. https://doi.org/10.1111/andr.12886

40. Morrell J.M., Wallgren M. Alternatives to Antibiotics in Semen Extenders: A Review. Pathogens. 2014; 3(4): 934–946. https://doi.org/10.3390/pathogens3040934

41. Miao X. et al. The Equilibrium of Bacterial Microecosystem: Probiotics, Pathogenic Bacteria, and Natural Antimicrobial Substances in Semen. Microorganisms. 2024; 12(11): 2253. https://doi.org/10.3390/microorganisms12112253

42. Cagnoli C.I., Chiapparrone M.L., Cacciato C.S., Rodríguez M.G., Aller J.F., Catena M.d.C. Effects of Campylobacter fetus on bull sperm quality. Microbial Pathogenesis. 2020; 149: 104486. https://doi.org/10.1016/j.micpath.2020.104486

43. Marchiani S. et al. Effects of common Gram-negative pathogens causing male genitourinary-tract infections on human sperm functions. Scientific Reports. 2021; 11: 19177. https://doi.org/10.1038/s41598-021-98710-5

44. Eini F., Kutenaei M.A., Zareei F., Dastjerdi Z.S., Shirzeyli M.H., Salehi E. Effect of bacterial infection on sperm quality and DNA fragmentation in subfertile men with Leukocytospermia. BMC Molecular and Cell Biology. 2021; 22: 42. https://doi.org/10.1186/s12860-021-00380-8

45. Appiah M.O., Wang J., Lu W. Microflora in the Reproductive Tract of Cattle: A Review. Agriculture. 2020; 10(6): 232. https://doi.org/10.3390/agriculture10060232

46. Maroto Martín L.O. et al. Bacterial contamination of boar semen affects the litter size. Animal Reproduction Science. 2010; 120(1–4): 95–104. https://doi.org/10.1016/j.anireprosci.2010.03.008

47. Sheldon I.M., Owens S.E. Postpartum uterine infection and endometritis in dairy cattle. Animal Reproduction. 2017; 14(3): 622–629. https://doi.org/10.21451/1984-3143-AR1006

48. Tvrdá E. et al. Possible Implications of Bacteriospermia on the Sperm Quality, Oxidative Characteristics, and Seminal Cytokine Network in Normozoospermic Men. International Journal of Molecular Sciences. 2022; 23(15): 8678. https://doi.org/10.3390/ijms23158678

49. Varela E. et al. How does the microbial load affect the quality of equine cool-stored semen?. Theriogenology. 2018; 114: 212–220. https://doi.org/10.1016/j.theriogenology.2018.03.028

50. Konstantinidis T., Tsigalou C., Karvelas A., Stavropoulou E., Voidarou C., Bezirtzoglou E. Effects of Antibiotics upon the Gut Microbiome: A Review of the Literature. Biomedicines. 2020; 8(11): 502. https://doi.org/10.3390/biomedicines8110502

51. Lv S. et al. Gut microbiota is involved in male reproductive function: a review. Frontiers in Microbiology. 2024; 15: 1371667. https://doi.org/10.3389/fmicb.2024.1371667

52. Adak A., Khan M.R. An insight into gut microbiota and its functionalities. Cellular and Molecular Life Sciences. 2019; 76(3): 473–493. https://doi.org/10.1007/s00018-018-2943-4

53. Hao Y. et al. Gut Microbiota-Testis Axis: FMT Mitigates High-Fat Diet-Diminished Male Fertility via Improving Systemic and Testicular Metabolome. Microbiology Spectrum. 2022; 10(3): e00028-22. https://doi.org/10.1128/spectrum.00028-22

54. Zhou Y. et al. Taxifolin increased semen quality of Duroc boars by improving gut microbes and blood metabolites. Frontiers in Microbiology. 2022; 13: 1020628. https://doi.org/10.3389/fmicb.2022.1020628

55. Zhang Y., Hou B., Liu T., Wu Y., Wang Z. Probiotics improve polystyrene microplastics-induced male reproductive toxicity in mice by alleviating inflammatory response. Ecotoxicology and Environmental Safety. 2023; 263: 115248. https://doi.org/10.1016/j.ecoenv.2023.115248

56. Wiest R., Garcia-Tsao G. Bacterial translocation (BT) in cirrhosis. Hepatology. 2005; 41(3): 422–433. https://doi.org/10.1002/hep.20632

57. Tremellen K., McPhee N., Pearce K., Benson S., Schedlowski M., Engler H. Endotoxin-initiated inflammation reduces testosterone production in men of reproductive age. American Journal of PhysiologyEndocrinology and Metabolism. 2018; 314(3): E206–E213. https://doi.org/10.1152/ajpendo.00279.2017

58. Desai M.S. et al. A Dietary Fiber-Deprived Gut Microbiota Degrades the Colonic Mucus Barrier and Enhances Pathogen Susceptibility. Cell. 2016; 167(5): 1339–1353.e1321. https://doi.org/10.1016/j.cell.2016.10.043

59. Li P., Hu J., Zhao H., Feng J., Chai B. Multi-Omics Reveals Inhibitory Effect of Baicalein on Non-Alcoholic Fatty Liver Disease in Mice. Frontiers in Pharmacology. 2022; 13: 925349. https://doi.org/10.3389/fphar.2022.925349

60. Wang Y., Xie Z. Exploring the role of gut microbiome in male reproduction. Andrology. 2022; 10(3): 441–450. https://doi.org/10.1111/andr.13143

61. Ding N. et al. Impairment of spermatogenesis and sperm motility by the high-fat diet-induced dysbiosis of gut microbes. Gut. 2020; 69(9): 1608–1619. https://doi.org/10.1136/gutjnl-2019-319127

62. Clarke G. et al. The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Molecular Psychiatry. 2013; 18(6): 666–673. https://doi.org/10.1038/mp.2012.77

63. Ye L. et al. Impacts of Immunometabolism on Male Reproduction. Frontiers in Immunology. 2021; 12: 658432. https://doi.org/10.3389/fimmu.2021.658432

64. Lin Y. et al. Effects of dietary L-leucine supplementation on testicular development and semen quality in boars. Frontiers in Veterinary Science. 2022; 9: 904653. https://doi.org/10.3389/fvets.2022.904653

65. Zhu Y. et al. Catalpol ameliorates diabetes-induced testicular injury and modulates gut microbiota. Life Sciences. 2021; 267: 118881. https://doi.org/10.1016/j.lfs.2020.118881

66. Yuan X., Chen R., Zhang Y., Lin X., Yang X. Gut microbiota: effect of pubertal status. BMC Microbiology. 2020; 20: 334. https://doi.org/10.1186/s12866-020-02021-0

67. Helli B., Kavianpour M., Ghaedi E., Dadfar M., Haghighian H.K. Probiotic effects on sperm parameters, oxidative stress index, inflammatory factors and sex hormones in infertile men. Human Fertility. 2022; 25(3): 499–507. https://doi.org/10.1080/14647273.2020.1824080

68. Akram M., Ali S.A., Behare P., Kaul G. Dietary intake of probiotic fermented milk benefits the gut and reproductive health in mice fed with an obesogenic diet. Food & Function. 2022; 13(2): 737–752. https://doi.org/10.1039/d1fo02501e

69. Inatomi T., Otomaru K. Effect of dietary probiotics on the semen traits and antioxidative activity of male broiler breeders. Scientific Reports. 2018; 8: 5874. https://doi.org/10.1038/s41598-018-24345-8


Review

For citations:


Yildirim E.A., Filippova V.A., Sokolova K.A., Korochkina E.A., Finageev E.Yu., Shubina M.A. Semen liquid microbiome of Bos taurus: taxonomic diversity, impact on fertility, and potential for probiotic modulation. Agrarian science. 2026;1(1):51-61. (In Russ.) https://doi.org/10.32634/0869-8155-2026-402-01-51-61

Views: 18

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0869-8155 (Print)
ISSN 2686-701X (Online)